9,246 research outputs found

    A Multivariate Jump-Driven Financial Asset Model

    Get PDF
    We discuss a Lévy multivariate model for financial assets which incorporates jumps, skewness, kurtosis and stochastic volatility. We use it to describe the behavior of a series of stocks or indexes and to study a multi-firm, value-based default model. Starting from an independent Brownian world, we introduce jumps and other deviations from normality, including non-Gaussian dependence. We use a sto- chastic time-change technique and provide the details for a Gamma change. The main feature of the model is the fact that - opposite to other, non jointly Gaussian settings - its risk neutral dependence can be calibrated from univariate derivative prices, providing a surprisingly good fit.Lévy processes, multivariate asset modelling, copulas, risk neutral dependence.

    The History of the Quantitative Methods in Finance Conference Series. 1992-2007

    Get PDF
    This report charts the history of the Quantitative Methods in Finance (QMF) conference from its beginning in 1993 to the 15th conference in 2007. It lists alphabetically the 1037 speakers who presented at all 15 conferences and the titles of their papers.

    Measuring and managing the credit exposure of derivatives portfolios

    Get PDF
    CONCLUSION The analysis of the exposure measurement problem has shown that the proper measurement of counterparty exposure for portfolios of derivatives transactions is a complex task that cannot be performed without making a lot of simplifying assumptions. Because of the complicated interaction of correlation effects and offsettings from different transactions, the single transaction framework which is currently used by most banks is definitely not capable of accurately determining the portfolio credit risk. When simulation techniques are applied to estimate exposure, the accuracy of exposure estimations can be increased significantly. However, a lot of modelling choices has to be made concerning the valuation of transactions and the stochastic model of underlying market rates. Because the system has to make projections of market rates into the far future, the choice of an appropriate stochastic model for market rate dynamics is crucial in order to prevent unreasonable scenarios. The predominant application of models based on Brownian Motion in today’s bank risk management therefore leads to questionable results in respect to derivatives exposure evaluation

    Stochastic volatility

    Get PDF
    Given the importance of return volatility on a number of practical financial management decisions, the efforts to provide good real- time estimates and forecasts of current and future volatility have been extensive. The main framework used in this context involves stochastic volatility models. In a broad sense, this model class includes GARCH, but we focus on a narrower set of specifications in which volatility follows its own random process, as is common in models originating within financial economics. The distinguishing feature of these specifications is that volatility, being inherently unobservable and subject to independent random shocks, is not measurable with respect to observable information. In what follows, we refer to these models as genuine stochastic volatility models. Much modern asset pricing theory is built on continuous- time models. The natural concept of volatility within this setting is that of genuine stochastic volatility. For example, stochastic-volatility (jump-) diffusions have provided a useful tool for a wide range of applications, including the pricing of options and other derivatives, the modeling of the term structure of risk-free interest rates, and the pricing of foreign currencies and defaultable bonds. The increased use of intraday transaction data for construction of so-called realized volatility measures provides additional impetus for considering genuine stochastic volatility models. As we demonstrate below, the realized volatility approach is closely associated with the continuous-time stochastic volatility framework of financial economics. There are some unique challenges in dealing with genuine stochastic volatility models. For example, volatility is truly latent and this feature complicates estimation and inference. Further, the presence of an additional state variable - volatility - renders the model less tractable from an analytic perspective. We examine how such challenges have been addressed through development of new estimation methods and imposition of model restrictions allowing for closed-form solutions while remaining consistent with the dominant empirical features of the data.Stochastic analysis

    Simulation-based Estimation Methods for Financial Time Series Models

    Get PDF
    This chapter overviews some recent advances on simulation-based methods of estimating financial time series models that are widely used in financial economics. The simulation-based methods have proven to be particularly useful when the likelihood function and moments do not have tractable forms, and hence, the maximum likelihood (ML) method and the generalized method of moments (GMM) are diffcult to use. They are also capable of improving the finite sample performance of the traditional methods. Both frequentist's and Bayesian simulation-based methods are reviewed. Frequentist's simulation-based methods cover various forms of simulated maximum likelihood (SML) methods, the simulated generalized method of moments (SGMM), the efficient method of moments (EMM), and the indirect inference (II) method. Bayesian simulation-based methods cover various MCMC algorithms. Each simulation-based method is discussed in the context of a specific financial time series model as a motivating example. Empirical applications, based on real exchange rates, interest rates and equity data, illustrate how the simulation-based methods are implemented. In particular, SML is applied to a discrete time stochastic volatility model, EMM to estimate a continuous time stochastic volatility model, MCMC to a credit risk model, the II method to a term structure model.Generalized method of moments, Maximum likelihood, MCMC, Indirect Inference, Credit risk, Stock price, Exchange rate, Interest rate..

    Credit Risk Meets Random Matrices: Coping with Non-Stationary Asset Correlations

    Full text link
    We review recent progress in modeling credit risk for correlated assets. We start from the Merton model which default events and losses are derived from the asset values at maturity. To estimate the time development of the asset values, the stock prices are used whose correlations have a strong impact on the loss distribution, particularly on its tails. These correlations are non-stationary which also influences the tails. We account for the asset fluctuations by averaging over an ensemble of random matrices that models the truly existing set of measured correlation matrices. As a most welcome side effect, this approach drastically reduces the parameter dependence of the loss distribution, allowing us to obtain very explicit results which show quantitatively that the heavy tails prevail over diversification benefits even for small correlations. We calibrate our random matrix model with market data and show how it is capable of grasping different market situations. Furthermore, we present numerical simulations for concurrent portfolio risks, i.e., for the joint probability densities of losses for two portfolios. For the convenience of the reader, we give an introduction to the Wishart random matrix model.Comment: Review of a new random matrix approach to credit ris
    • …
    corecore