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Simulation-based Estimation Methods for
Financial Time Series Models∗

Jun Yu1

School of Economics and Sim Kee Boon Institute for Financial Economics,
Singapore Management University, 90 Stamford Road Singapore 178903;
yujun@smu.edu.sg.

Summary. This chapter overviews some recent advances on simulation-based
methods of estimating financial time series models that are widely used in finan-
cial economics. The simulation-based methods have proven to be particularly useful
when the likelihood function and moments do not have tractable forms, and hence,
the maximum likelihood (ML) method and the generalized method of moments
(GMM) are difficult to use. They are also capable of improving the finite sample
performance of the traditional methods. Both frequentist’s and Bayesian simulation-
based methods are reviewed. Frequentist’s simulation-based methods cover various
forms of simulated maximum likelihood (SML) methods, the simulated generalized
method of moments (SGMM), the efficient method of moments (EMM), and the
indirect inference (II) method. Bayesian simulation-based methods cover various
MCMC algorithms. Each simulation-based method is discussed in the context of
a specific financial time series model as a motivating example. Empirical applica-
tions, based on real exchange rates, interest rates and equity data, illustrate how the
simulation-based methods are implemented. In particular, SML is applied to a dis-
crete time stochastic volatility model, EMM to estimate a continuous time stochastic
volatility model, MCMC to a credit risk model, the II method to a term structure
model.

Keywords: Generalized method of moments, Maximum likelihood, MCMC, Indirect
Inference, Credit risk, Stock price, Exchange rate, Interest rate.

1 Introduction

Relative to some fields in economics, financial economics has a rather short
history. Over the last half century, however, there has been an explosion of
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Data and program code used in this paper can be download from my website at
http://www.mysmu.edu/faculty/yujun/research.html.
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theoretical work in financial economics. At the same time, more and more com-
plex financial products and services have been created. The size of financial
markets has exponentially increased and the quality of the database is hugely
advanced. The major developments in theoretical finance and the availability
of high quality data provide an extremely rich framework for empirical work
in financial economics.

How to price financial assets has been a driving force for much of the re-
search on financial asset pricing. With the growth of complexity in financial
products and services, the challenges faced by the financial economists have
naturally grown correspondingly, one of which is the computing cost. Another
driving force for research in financial economics is the need to bring finance
theory to data. Empirical analysis in financial economics often involves calcu-
lating the likelihood function or solving a set of moment conditions.

Traditional econometric methods for analyzing models in financial eco-
nomics include maximum likelihood (ML), quasi-ML, generalized method of
moments (GMM), and classical Bayesian methods. When the model is fully
specified and the likelihood function has a tractable form, ML and Bayesian
methods provide the full likelihood-based inference. Under mild regularity
conditions, it is well recognized that the ML estimator (MLE) is consistent,
asymptotically normally distributed and asymptotically efficient. Due to the
invariance principle, a function of MLE is an MLE, and hence, inherits all the
nice asymptotic properties (e.g, Zehna, 1966). These features greatly facili-
tate applications of ML in financial economics. When the model is not fully
specified but certain moments exist, GMM can be applied. Relative to ML,
GMM trades off efficiency with robustness.

Financial data are typically available in the time series format. Conse-
quently, time series methods are of critical importance to empirical research
in financial economics. Historically, financial economists restricted themselves
to a small class of time series models so that the setups were simple enough to
permit an analytical solution for asset prices. Moreover, empirical analysis was
often done based on a small set of financial assets, so that the computational
cost is kept low. The leading example is, arguably, the geometric Brownian
motion, which was used by Black and Scholes to price European options (Black
and Scholes, 1973) and by Merton to price corporate bonds (Merton, 1974). In
recent years, however, many alternative models and financial products have
been proposed so that asset prices do not have analytical solutions any more.
As a result, various numerical solutions have been proposed, one class of which
is based on simulations. Although the use of simulation-based methods for as-
set pricing is sufficiently important and merits a detailed review, it is beyond
the scope of the present chapter. We refer readers to McLeish (2005) for a
textbook treatment on asset pricing via simulation methods.

Even if the pricing formula of a financial asset has a tractable form, esti-
mation of the underlying time series model is not always feasible by standard
econometric methods. For many important financial time series models, the
likelihood function or the moment conditions cannot be evaluated analyti-
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cally, and may be numerically formidable so that standard econometric meth-
ods, such as ML, GMM and Bayesian, are not feasible. For example, Heston
(1993) derived a closed-form expression for the European option price under
the square root specification for volatility. It is known that the ML estimation
of Heston’s stochastic volatility (SV) model, based on stock prices is notori-
ously difficult. For more complicated models where asset prices do not have a
closed-form expression, it is almost always the case that standard estimation
methods are difficult to use.

Parameter estimation is important for asset pricing. For example, in order
to estimate the theoretical price of a contingent claim implied by the under-
lying time series model, one has to estimate the parameters in the time series
model and then plug the estimates into the pricing formula. In addition, pa-
rameter estimates in financial time series models are necessary inputs to many
other financial decision makings, such as asset allocation, value-at-risk, fore-
casting, estimation of the magnitude of microstructure effects, estimation of
transaction costs, specification analysis and credit risk analysis. For example,
in both academic research and practical applications, often alternative, and
sometimes competing, time series specifications co-exist. Consequently, it may
be important to check the validity of a particular specification and to compare
the relative performance of alternative specifications. Obviously, estimation of
these alternative specifications is an important preliminary step to the specifi-
cation analysis. A further example is, in order to estimate the credit spread of
a risky corporate bond over the corresponding Treasury rate and the default
probability of a firm, the parameters in the underlying structural model have
to be estimated first.

In some cases where ML or GMM or Bayesian methods are feasible but
financial time series are highly persistent, classical estimators of certain pa-
rameters may have poor finite sample statistical properties, due to the pres-
ence of a large finite sample bias. The bias in parameter estimation leads to
a bias in other financial decision making. Moreover, the large finite sample
bias often leads to a poor approximation of the finite sample distribution by
the asymptotic distribution. As a result, statistical inference based on the
asymptotic distribution may be misleading. Because many financial variables,
such as interest rates and volatility, are highly persistent, this finite sample
problem may be empirically important.

To overcome the difficulties in calculating likelihood and moments and to
improve the finite sample property of standard estimators, many simulation-
based estimation methods have been proposed in recent years. Some of them
are methodologically general; some other are specially tailored to deal with a
particular model structure at hand. In this chapter, we review some widely
used simulation-based estimation methods.

Stern (1997) is an excellent review of the simulation-based estimation
methods in the cross-sectional context while Gouriéroux and Monfort (1995)
reviewed the simulation-based estimation methods in the classical framework.
Johannes and Polson (2009) reviewed the Bayesian MCMC methods used
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in financial econometrics. Our present review is different from these reviews
in several important aspects. First, our review covers both the classical and
Bayesian methods whereas Johannes and Polson (2009) only reviewed the
Bayesian methods. Second, unlike Stern (1997) and Gouriéroux and Mon-
fort (1995), more recently developed classical methods are discussed in the
present chapter. Moreover, our review discusses the usefulness of simulation-
based methods to improve finite sample performances, whilst the others do
not.

We organize the rest of this chapter by collecting the methods into four
categories: SML, SGMM, MCMC methods, and simulation-based resampling
methods. Each method is discussed in the context of specific examples and
an empirical illustration is performed using real data correspondingly. Sec-
tion 2 overviews the classical estimation methods and explains why they may
be difficult to use in practice. Section 3 discusses discrete time stochastic
volatility models and illustrates the implementation of an SML method. Sec-
tion 4 discusses continuous time models and illustrates the implementation
of EMM. Section 5 discusses structure credit risk models and illustrates the
implementation of a Bayesian MCMC method. Section 6 discusses continuous
time models with a linear and persistent drift function and illustrates the im-
plementation of the indirect inference (II) method in the context of Vasicek
model for the short term interest rate. Finally, Section 7 concludes.

2 Problems with Traditional Estimation Methods

In many cases the likelihood function of a financial time series model can be
expressed as:2

L(θ) = p(X; θ) =

∫
p(X,V; θ)dV, (1)

where X = (X1, · · · , Xn) := (Xh, · · · , Xnh) is the data observed by econo-
metricians,3 h the sampling interval, p(X) the joint density of X, V a vector
of latent variables, θ a set of K parameters that econometricians wish to es-
timate. As X(t) often represents the annualized data, when daily (weekly or
monthly) data are used, h is set at 1/252 (1/52 or 1/12). Assume T = nh is
the time span of the data and the true values for θ is θ0. When θ is assumed
random, we write p(X; θ) as p(X|θ).

MLE maximizes the log-likelihood function over θ in a certain parameter
space:

θ̂ML
n := argmaxθ∈Θ`(θ)),

where `(θ) = lnL(θ) = ln p(X; θ). The first order condition of the maximiza-
tion problem is:

2 Specific examples can be found below.
3 When there is no confusion, we will use Xt and Xth interchangeably.
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∂`

∂θ
= 0.

Under mild regularity conditions, MLE has desirable asymptotic properties
of consistency, normality and efficiency. Moreover, the invariance property of
MLE ensures that a smoothed transformation of MLE is an MLE of the same
transformation of the corresponding parameters (Zehna, 1966). This property
has proven very useful in financial applications.

Unfortunately, when the integration in (1) is not analytically available and
the dimension of V is high, numerical evaluation of (1) is difficult. If p(X; θ)
is difficult to calculate, ML is not easy to implement.

Instead of maximizing the likelihood function, Bayesian methods update
the prior density to the posterior density using the likelihood function, based
on the Bayes theorem:

p(θ|X) ∝ p(X; θ)p(θ),

where p(θ) is the prior density and p(θ|X) the posterior distribution. As in
ML, if p(X; θ) is difficult to calculate, the posterior density p(θ|X) is generally
difficult to evaluate.

Unlike ML or Bayesian methods that rely on the distributional assumption
of the model, GMM only requires a set of moment conditions to be known.
Let g be a set of q moment conditions, i.e.,

E[g(X; θ0)] = 0

GMM minimizes a distance measure, i.e.,

θ̂GMM
n := argminθ∈Θ

(
1

n

n∑
t=1

g(Xt; θ)

)′
Wn

(
1

n

n∑
t=1

g(Xt; θ)

)′
,

where Wn is a certain positive definite weighting matrix of q × q-dimension
(q ≥ K), which may depend on the sample but not θ. Obviously, the imple-
mentation of GMM requires the moments to be known analytically or easy to
calculate numerically. Since a fixed set of moments contains less information
than a density, in general, GMM uses less information than ML, and hence,
is statistically less efficient. In the case where the moment conditions are se-
lected based on the score functions (in which case q = K), GMM and ML
are equivalent. However, sometimes moment conditions are obtained without
a distributional assumption, and hence, GMM may be more robust than the
likelihood-based methods. Under some regularity conditions, Hansen (1982)
obtained the asymptotic distributions of GMM estimators. Unfortunately,
many financial time series models do not have an analytical expression for
moments, and moments are difficult to evaluate numerically, making GMM
not trivial to implement.

Even if ML is applicable, MLE is not necessarily the best estimator in finite
samples. Phillips and Yu (2005a, 2005b, 2009a, 2009b) have provided numer-
ous examples to demonstrate the poor finite sample properties of MLE. In
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general, there are three reasons for this. First, many financial variables (such
as interest rates and volatility) are very persistent. When a linear time series
model is fitted to these variables, ML and GMM typically lead to substantial
finite sample bias for the mean reversion parameter even in very large samples.
For example, when 2500 daily observations are used to estimate the square
root model of the short term interest rate, ML estimates the mean reversion
parameter with nearly 300% bias. Second, often financial applications involve
non-linear transformation of estimators of the system parameters. Even if the
system parameters are estimated without any bias, insertion of even unbiased
estimators into the nonlinear functions will not assure unbiased estimation of
the quantity of interest. A well known example is the MLE of a deep out-of-
money option which is highly nonlinear in volatility. In general, the more pro-
nounced the nonlinearity, the worse the finite sample performance is. Third,
even if a long-span sample is available for some financial variables and hence
asymptotic properties of econometric estimators become more relevant, full
data sets are not always employed in estimation because of possible structural
changes in long-span data. When short-span samples are used in estimation,
finite sample distributions can be far from the asymptotic theory.

A natural way to improve the finite sample performance of classical estima-
tors is to obtain the bias in an analytical form, and then remove the bias from
the biased estimator, with the hope that the variance of the bias-corrected
estimator does not increase or only increases slightly, so that the mean square
error becomes smaller. Unfortunately, the explicit analytical bias function is
often not available, except in very simple cases.

When the likelihood function and moments are difficult to calculate or tra-
ditional estimators perform poorly in finite samples, one can resort to simula-
tion methods. There has been an explosion of theoretical and empirical work
using simulation methods in financial time series analysis over the last fifteen
years. In the following sections, we will consider some important examples
in financial economics and financial econometrics. Simulated-based methods
are discussed in the context of these examples and an empirical illustration is
provided in each case.

3 Simulated ML and Discrete Time SV Models

To illustrate the problem in ML, we first introduce the basic lognormal (LN)
SV model of Taylor (1982), defined by,{

Xt = σeht/2εt, t = 1, . . . , n,
ht+1 = φht + γηt, t = 1, . . . , n− 1,

(2)

where Xt is the return of an asset, |φ| < 1, εt
iid∼ N(0, 1), ηt

iid∼ N(0, 1),
corr(εt, ηt) = 0, and h1 ∼ N(0, γ2/(1 − φ2)). The parameters of interest
are θ = (σ, φ, γ)′. This model has been proven to be a powerful alternative
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to ARCH-type models (Geweke, 1994 and Danielsson, 1994). Its continuous
time counterpart has been used for pricing options contracts (Hull and White,
1987).

Let X = (X1, . . . , Xn)′ and V = (h1, . . . , hn)′. Only X is observed by the
econometrician. The likelihood function of the model is given by

p(X; θ) =

∫
p(X,V; θ)dV =

∫
p(X|V; θ)p(V; θ)dV. (3)

To perform the ML estimation to the SV model, one must approximate the
high-dimensional integral (3) numerically. Since a typical financial time series
has at least several hundreds observations, using traditional numerical inte-
gration methods, such as quadratures, to approximate the high-dimensional
integral (3) is numerically formidable. This is the motivation of the use of
Monte Carlo integration methods in much of the SV literature.

The basic LN-SV model has been found to be too restrictive empirically
for many financial time series and generalized in various dimensions to ac-
commodate stylized facts. Examples include the leverage effect (Harvey and
Shephard, 1996 and Yu, 2005), SV-t (Harvey, Ruiz and Shephard, 1994),
super-position (Shephard and Pitt, 1999b), jumps (Duffie, Pan and Singleton,
2000), time varying leverage effect (Yu, 2009b). An widely used specification,
alternative to the LN-SV model, is the Heston model (Heston, 1993).

In this section, we will review several approaches to do simulated ML
estimation of the basic LN-SV model. The general methodology is discussed,
followed by a discussion of how to use the method to estimate the LN-SV
model and then by an empirical application.

3.1 Importance sampler based on the Laplace approximation
(LA-IS)

Taking the advantage that the integrand is a probability distribution, a widely
used SML method evaluates the likelihood function numerically via simula-
tions. One method matches the integrand with a multivariate normal distribu-
tion, draws a sequence of independent variables from the multivariate normal
distribution, and approximates the integral by the sample mean of a function
of the independent draws. Namely, a Monte Carlo method is used to approx-
imate the integral numerically and a carefully selected multivariate normal
density is served as an importance function in the Monte Carlo method. The
technique in the first stage is known as the Laplace approximation while the
technique in the second stage is known as the importance sampler. In this
chapter the method is denoted LA-IS.

To fix the idea, in Stage 1, we approximate p(X,V; θ) by a multivariate
normal distribution for V, N(·; V∗,−Ω−1), where

V∗ = arg max
V

ln p(X,V; θ) (4)
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and

Ω =
∂2 ln p(X,V∗; θ)

∂V∂V′
. (5)

For the LN-SV model V∗ does not have the analytical expression and
hence numerical methods are needed. For example, Shephard and Pitt (1997),
Durham (2006), Skaug and Yu (2007) proposed to use Newton’s method,
which involves recursive calculations of V = V−−Ω−1V−, based on a certain
initial vector of log-volatilities, V0.

Based on the Laplace approximation, the likelihood function can be writ-
ten as

p(X; θ) =

∫
p(X,V; θ)dV =

∫
p(X,V; θ)

N(V; V∗,−Ω−1)
N(V; V∗,−Ω−1)dV. (6)

The idea of importance sampling is to draw samples V(1), . . . ,V(S) from
N(·; V∗,−Ω−1) so that p(X; θ) is approximated by

1

S

S∑
s=1

p(X,V(s); θ)

N(V(s); V∗,−Ω−1)
. (7)

After the likelihood function is obtained, a numerical optimization procedure,
such as the quasi Newton method, can be applied to obtain the ML estimator.

The convergence of (7) to the likelihood function p(X; θ) with S → ∞ is
ensured by Komogorov’s strong law of large numbers. The square root rate of
convergence is achieved if and only if the following condition holds

V ar

(
p(X,V(s); θ)

N(V(s); V∗,−Ω−1)

)
<∞.

See Koopman, Shephard and Creal (2009) for further discussions on the con-
ditions and a test to check the convergence.

The idea of the LA-IS method is quite general. The approximation error is
determined by the distance between the integrant and the multivariate normal
distribution and the size of S. The Laplace approximation does not have any
error if p(X,V; θ) is the Gaussianity in V. In this case, S = 1 is big enough
to obtain the exact value of the integral. The further p(X,V; θ) away from
Gaussian in V, the less precise the Laplace approximation is. In this case, a
large value is needed for S.

For the LN-SV model, the integrand in (3) can be written as

p(X,V; θ) = N

(
h1, 0,

γ2

1− φ2

) n∏
t=2

N
(
ht, φhn−1, γ

2
) n∏
t=1

N
(
Xt, 0, σ

2eht
)
,

(8)
and hence
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ln p(X,V; θ) = lnN

(
h1, 0,

γ2

1− φ2

)
+

n∑
t=2

lnN
(
ht, φhn−1, γ

2
)
+

n∑
t=1

lnN
(
Xt, 0, σ

2eht
)
.

(9)
It is easy to show that

∂N(x;µ, σ2)/∂x

N(x;µ, σ2)
= −x− µ

σ2
,
∂N(x;µ, σ2)/∂µ

N(x;µ, σ2)
= −µ− x

σ2
,

∂N(x;µ, σ2)/∂σ2

N(x;µ, σ2)
= − 1

σ2

(
1− (x− µ)2

σ2

)
,

Using these results, we obtain the gradient of the log-integrand:

∂ ln p(X,V;θ)
∂h1

∂ ln p(X,V;θ)
∂h2

...
∂ ln p(X,V;θ)

∂hn−1
∂ ln p(X,V;θ)

∂hn


=



φh2−h1

γ2 − 1
2 + 1

2ε
2
1

φh3−φ2h2+φh1

γ2 − 1
2 + 1

2ε
2
2

...
φhn−φ2hn−1+φhn−2

γ2 − 1
2 + 1

2ε
2
n−1

hn−φhn−1

γ2 − 1
2 + 1

2ε
2
n


, (10)

and the Hessian matrix of the log-integrand:

Ω =



− 1
γ2 − 1

2ε
2
1

φ
γ2 · · · 0 0

φ
γ2 − 1+φ2

γ2 − 1
2ε

2
2 · · · 0 0

...
...

. . .
...

...

0 0 · · · − 1+φ2

γ2 − 1
2ε

2
n−1

φ
γ2

0 0 · · · φ
γ2 − 1

γ2 − 1
2ε

2
n


. (11)

Durham (2006, 2007), Koopman, Shephard and Carol (2009), Skaug and
Yu (2007) and Yu (2009b) applied the SML method to estimate generalized
SV models and documented the reliable performance in various contexts.

3.2 Monte Carlo likelihood (MCL) method

Durbin and Koopman (1997) proposed a closely related SML method which is
termed Monte Carlo likelihood (MCL) method. MCL was originally designed
to evaluate the likelihood function of a linear state-space model with non-
Gaussian errors. The basic idea is to decompose the likelihood function into
the likelihood of a linear state-space model with Gaussian errors and that
of the remainder. It is known that the likelihood function of a linear state-
space model with Gaussian errors can be calculated by the Kalman filter. The
likelihood of the remainder is calculated by simulations using LA-IS.

To obtain the linear state-space form for the LN-SV model, one can apply
the log-squared transformation to Xt:
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Yt = lnX2

t = lnσ2 + ht + εt, t = 1, . . . , n,
ht+1 = φht + γηt, t = 1, . . . , n− 1,

(12)

where εt
iid∼ lnχ2

(1) (i.e. no-Gaussian), ηt
iid∼ N(0, 1), corr(εt, ηt) = 0, and

h1 ∼ N(0, γ2/(1− φ2)). For any linear state-space model with non-Gaussian
measurement errors, Durbin and Koopman (1997) showed that the log-
likelihood function can be expressed as

ln p(X; θ) = lnLG(X; θ) + lnEG

[
pε(ε; θ)

pG(ε; θ)

]
, (13)

where lnLG(X; θ) is the the log-likelihood function of a carefully chosen ap-
proximating Gaussian model, pε(ε; θ) the true density of ε(:= (ε1, . . . , εn)′),
pG(ε; θ) the Gaussian density of the measurement errors of the approximating
model, EG the expectation with respect to the importance density in connec-
tion to the approximating model.

Relative to (3), (13) has the advantage that simulations are only needed to
estimate the departure of the likelihood from the Gaussian likelihood, rather
than the full likelihood. For the LN-SV model, lnLG(X; θ) often takes a much

larger value than lnEG

[
pε(ε;θ)
pG(ε;θ)

]
. As a result, MCL is computationally effi-

cient than other simulated-based ML methods because it only needs a small
number of simulations to achieve the desirable accuracy when approximating
the likelihood. However, the implementation of the method requires a linear
non-Gaussian state-space representation. Jungbacker and Koopman (2007)
extended the method to deal with nonlinear non-Gaussian state-space models.
Sandmann and Koopman (1998) applied the method to estimate the LN-SV
model and the SV-t model. Broto and Ruiz (2004) compared the performance
of alternative methods for estimating the LN-SV model and found supporting
evidence for of the good performance of MCL.

3.3 Efficient importance sampler (EIS)

Richard and Zhang (2007) developed an alternative simulated ML method. It
is based on a particular factorization of the importance density and termed
as Efficient Importance Sampling (EIS). Relative to the two SML methods
reviewed in Sections 3.1 and 3.2, EIS minimizes locally the Monte Carlo sam-
pling variance of the approximation to the integrand by factorizing the im-
portance density. To fix the idea, assume g(V|X) is the importance density
which can be constructed as

g(V|X) =

n∏
t=1

g(ht|ht−1,X) =

n∏
t=1

{
Cte

ctht+dth
2
t p(ht|ht−1)

}
, (14)

where ct, Ct and dt depend on X and ht−1 with {Ct} be a normalization
sequence so that g is a normal distribution. The sequences {ct} and {dt}
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should be chosen to match p(X,V; θ) and g(V|X) which, as we shown in
Section 3.1, requires a high-dimensional non-linear regression. The caveat of
EIS is to match each component in g(V|X) (i.e. Cte

ctht+dth
2
t p(ht|ht−1)), to the

corresponding element in the integrand p(X; V) (i.e. p(Xt|ht)p(ht|ht−1)) in a
backward manner, with t = n, n−1, · · · , 1. It is easy to show that Ct depends
only on ht−1 but not on ht. As a result, the recursive matching problem is
equivalent to running the following linear regression backward:

ln p(Xt|h(s)t )− lnCt+1 = a+ cth
(s)
t + dt(h

(s)
t )2, s = 1, · · · , S, (15)

where h
(1)
t , . . . , h

(S)
t are drawn from the importance density and h

(s)
t and

(h
(s)
t )2 are treated as the explanatory variables in the regression model with

Cn+1 = 1.
The method to approximate the likelihood involves the following proce-

dures:

1. Draw initial V(s) from Equation (2) with s = 1, · · · , S.
2. Estimate ct and dt from (15) and do it backward with Cn+1 = 1
3. Draw V(s) from importance density g(V|X) based on ct and dt.
4. Repeat Steps 2-3 until convergence. Denote the resulting sampler by V(s).
5. Approximate the likelihood by

1

S

S∑
s=1


n∏
t=1

p(Xt|h(s)t )

Ct exp
(
cth

(s)
t + dt(h

(s)
t )2

)
 .

The EIS algorithm relies on the user to provide a problem-dependent aux-
iliary class of importance samplers. An advantage of this method is that it
does not rely on the assumption that the latent process is Gaussian. Lisenfeld
and Richard (2003, 2006) applied this method to estimate a number of discrete
SV models while Kleppe, Skaug and Yu (2009, 2010) applied this method to
estimate continuous time SV models. Lee and Koopman (2004) compared the
EIS method with the LA-IS method and found two methods are comparable
in the context of the LN-SV model and the SV-t model. Bauwens and Galli
(2008) and Bauwens and Hautsch (2006) applied EIS to estimate a stochastic
duration model and a stochastic conditional intensity model, respectively.

3.4 An empirical example

For the purposes of illustration, we fit the LN-SV model to a widely used
dataset (namely svpd1.txt). The dataset consists of 945 observations on daily
pound/dollar exchange rate from 01/10/1981 to 28/06/1985. The same data
were used in Harvey, Ruiz and Shephard (1994), Shephard and Pitt (1997),
Meyer and Yu (2000), and Skaug and Yu (2007).

Matlab code (namely LAISLNSV.m) is used to implement the LA-IS
method. Table 1 reports the estimates and the likelihood value when S = 32.
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In Skaug and Yu (2007) the same method was used to estimate the same
model but S was set at 64. The estimates and the log-likelihood value based
on S = 32 are very similar to those based on S = 64, suggesting that a small
number of random samples can approximate the likelihood function very well.

Table 1: SMLE of the LN-SV Model

σ γ φ Log-Likelihood
s = 32 0.6323 0.1685 0.9748 917.845
s = 64 0.6305 0.1687 0.9734 917.458

4 Simulated GMM and Continuous Time Models

Many models that are used to describe financial time series are written in
terms of a continuous time diffusion X(t) that satisfies the stochastic differ-
ential equation

dX(t) = µ(X(t); θ)dt+ σ(X(t); θ)dB(t), (16)

where B(t) is a standard Brownian motion, σ(X(t); θ) a diffusion function,
µ(X(t); θ) a drift function, and θ a vector of unknown parameters. The target
here is to estimate θ from a discrete sampled observations, Xh, ..., Xnh with h
being the sampling interval. This class of parametric models has been widely
used to characterize the temporal dynamics of financial variables, including
stock prices, interest rates, and exchange rates.

Many estimation methods are based on the construction of the likelihood
function derived from the transition probability density of the discretely sam-
pled data. This approach is explained as follows. Suppose p(Xih|X(i−1)h, θ) is
the transition probability density. The Markov property of model (16) implies
the following log-likelihood function for the discrete sample

`(θ) =

n∑
i=1

ln(p(Xih|X(i−1)h, θ)). (17)

To perform exact ML estimation, one needs a closed form expression for
`(θ) and hence ln(p(Xih|X(i−1)h, θ)). In general, the transition density p sat-
isfies the forward equation:

∂p

∂t
=

1

2

∂2p

∂y2
.

and the backward equation:

∂p

∂s
= −1

2

∂2p

∂x2
.

where p(y, t|x, s) is the transition density. Solving the partial differential equa-
tion numerically at y = Xih, x = X(i−1)h yields the transition density. This
approach was proposed by Lo (1988).
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Unfortunately, only in rare cases, does the transition density p(Xih|X(i−1)h, θ)
have a closed form solution. Phillips and Yu (2009) provide a list of exam-
ples in which ln(p(Xih|X(i−1)h, θ)) have a closed form analytical expression.
These examples include the geometric Brownian Motion, Ornstein-Uhlenbeck
(OU) process, square-root process, and inverse square-root process. In general
solving the forward/backward equations is computationally demanding.

A classical and widely used estimation method is via the Euler scheme,
which approximates a general diffusion process such as equation (16) by the
following discrete time model

Xih = X(i−1)h + µ(X(i−1)h, θ)h+ σ(X(i−1)h, θ)
√
hεi, (18)

where εi ∼ i.i.d. N(0, 1). The transition density for the Euler discrete time
model (18) has the following closed form expression:

Xih|X(i−1)h ∼ N
(
X(i−1)h + µ(X(i−1)h, θ)h, σ

2(X(i−1)h, θ)h
)
. (19)

Obviously, the Euler scheme introduces a discretization bias. The magni-
tude of the bias introduced by Euler scheme is determined by h, which cannot
be controlled econometricians. In general, the bias becomes negligible when h
is close to zero. One way to use the full likelihood analysis is to make the sam-
pling interval arbitrarily small by partitioning the original sampling interval
so that the new subintervals are sufficiently fine for the discretization bias to
be negligible. By making the subintervals smaller, one inevitably introduces
latent variables between the two original consecutive observations X(i−1)h and
Xih. While our main focus is SGMM in this section, SML is possible and is
discussed first.

4.1 SML methods

To implement ML estimation, one can integrate out these latent observations.4

When the partition becomes finer, the discretization bias is approaching 0 but
the required integration becomes high dimensional. In general, the integral
does not have a closed-form expression and hence simulation-based methods
can be used, leading to simulated ML estimators. To fix the idea, suppose
that M − 1 auxiliary points are introduced between (i− 1)h and ih, i.e.,

((i− 1)h ≡)τ0, τ1, · · · , τM−1, τM (≡ ih).

Thus

4 Alternative to simulation-based approaches, one can use closed-form sequences to
approximate the transition density itself, thereby developing an approximation to
the likelihood function. Two different approximation mechanisms have been pro-
posed in the literature. One is based on the polynomial expansions (Aı̈t-Sahalia,
1999, 2002, 2008) whereas the other is based on the saddlepoint approximation
(Aı̈t-Sahalia and Yu, 2006).
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p(Xih|X(i−1)h; θ) =

∫
· · ·
∫
p(XτM , XτM−1

, · · · , Xτ1 |Xτ0 ; θ)dXτ1 · · · dXτM−1

=

∫
· · ·
∫ M∏

m=1

p(Xτm |Xτm−1
; θ)dXτ1 · · · dXτM−1

. (20)

The second equality follows from the Markov property. The idea behind the
simulated ML method is to approximate the densities p(Xτm |Xτm−1

; θ) (step
1), evaluate the multidimensional integral using importance sampling tech-
niques (step 2) and then maximize the likelihood function numerically. To the
best of my knowledge, Pedersen (1995) was the first study that suggested the
idea in this context.

Pedersen’s method relies on the Euler scheme, namely, approximates the
latent transition densities p(Xτm |Xτm−1

; θ) based on the Euler scheme and
approximates the integral by drawing samples of (XτM−1

, · · · , Xτ1) via simu-
lations from the Euler scheme. That is, the importance sampling function is
the mapping from (ε1, ε2, · · · , εM−1) 7→ (Xτ1 , Xτ2 , · · · , XτM−1

) given by the
Euler scheme:

Xτm+1 = Xτm + µ(Xτm ; θ)h/M + σ(Xτm , θ)
√
h/Mεm+1, m = 0, · · · ,M − 2,

where (ε1, · · · , εM−1) is a multivariate standard normal.
Durham and Gallant (2002) noted two sources of approximation error in

Pedersen’s method, the discretization bias in the Euler scheme and the er-
rors due to the Monte Carlo integration. A number of studies have provided
methods to reduce these two sources of error. For example, to reduce the dis-
cretization bias in step 1, Elerian (1998) used the Milstein scheme instead of
the Euler scheme while Durham and Gallant advocated using a variance sta-
blization transformation, i.e., applying the Lamperti transform to the contin-
uous time model. Certainly, other methods that can reduce the discretization
bias may be used. Regarding step 2, Elerian, Shephard and Chib (2001) ar-
gued that the importance sampling function of Pedersen ignores the end-point
information, XτM , and Durham and Gallant (2002) showed that Pedersen’s
importance function draws most samples from regions where the integrand
has little mass. Consequently, Pedersen’s method is simulation-inefficient.

To improve the efficiency of the importance sampler, Durham and Gallant
(2002) considered the following importance sampling function

Xτm+1
= Xτm +

Xih −Xτm

ih− τm
h/M +σ(Xτm , θ)

√
h/Mεm+1, m = 0, · · · ,M − 2,

where (ε1, · · · , εM−1) is a multivariate standard normal. Loosing speaking,
this is a Brownian bridge because it starts from X(i−1)h at (i − 1)h and
is conditioned to terminate with Xih at ih. Another importance sampling
function proposed by Durham and Gallant (2002) is to draw Xτm+1 from the
density N(Xτm + µ̃mh/M, σ̃2

mh/M) where µ̃m = (XτM − Xτm)/(ih − τm),
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σ̃2
m = σ2(Xτm)(M − m − 1)/(M − m). Elerian, Shephard and Chib (2001)

suggested the following tied-down process:

p(Xτ1 , · · · , XτM−1
|Xτ0 , XτM ),

as the importance function and proposed using the Laplace approximation to
the tied-down process. Durham and Gallant (2002) compared the performance
of these three importance functions relative to Pedersen (1995) and found that
all these methods deliver substantial improvements.

4.2 Simulated GMM (SGMM)

Not only is the likelihood function for (16) difficult to construct, but also
the moment conditions; see, for example, Duffie and Singleton (1993) and He
(1990).5 While model (16) is difficult to estimate, data can be easily simu-
lated from it. For example, one can simulate data from the Euler scheme at an
arbitrarily small sampling interval. With the interval approaches to zero, the
simulated data can be regarded as the exact simulation although the transition
density at the coarser sampling interval is not known analytically. With sim-
ulated data, moments can be easily constructed, facilitating simulation-based
GMM estimation. Simulated GMM (SGMM) methods have been proposed by
McFadden (1989), Pakes and Pollard (1989) for iid environments, and Lee
and Ingram (1991), Duffie and Singleton (1993) for time series environments.

Let {X̃(s)
t (θ)}N (n)

t=1 be the data simulated from (16) when parameter is θ us-

ing random seed s. Therefore, {X̃(s)
t (θ0)} is drawn from the same distribution

as the original data {Xt} and hence share the same moment characteristic.
The parameter θ is chosen so as to “match moments”, that is, to minimize
the distance between sample moments of the data and those of the simulated
data. Assuming H represents K-moments, SGMM estimator is defined as:

θ̂SGMM
n := argminθ∈Θ

 1

n

n∑
t=1

g(Xt)−
1

N (n)

N (n)∑
t=1

g(X̃
(s)
t ; θ)

′Wn

 1

n

n∑
t=1

g(Xt)−
1

N (n)

N (n)∑
t=1

g(X̃
(s)
t ; θ)

′ ,
where Wn is a certain positive definite weighting matrix of q × q-dimension
(q ≥ K), which may depend on the sample but not θ, N (n) is the number of
number of observations in a simulated path. Under the ergodicity condition,

5 However, when X(t) is observed, Hansen and Scheinkman (1995) showed that
there exist forward and reverse-time genera- tors for stationary continuous time
models and explained how to use these generators to construct moment condi-
tions.
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1

N (n)

N (n)∑
t=1

g(X̃
(s)
t ; θ0)

p→ E(g(Xt; θ0))

and
1

n

n∑
t=1

g(Xt)
p→ E(g(Xt; θ0)),

justifying the SGMM procedure.
The SGMM procedure can be made optimal with a careful choice of the

weighting function, given a set of moments. However, the SGMM estimator is
in general asymptotically less efficient than SML for the reason that moments
are less informative than the likelihood. Gallant and Tauchen (1996) extended
the SGMM technique so that the GMM estimator is asymptotically as efficient
as SML. This approach is termed efficient method of moments (EMM), which
we review below.

4.3 Efficient method of moments (EMM)

EMM is first introduced by Gallant and Tauchen (1996) and has now found
many applications in financial time series; see Gallant and Tauchen (2001a,
2001c) for the detailed account of the method and a review of the litera-
ture. While it is closely related to the general SGMM, there is one important
difference between them. Namely, GMM relies on a set of ad hoc moment con-
ditions, EMM is based on a judiciously chosen set of moment conditions. The
moment conditions that EMM is based on are the expectation of the score of
an auxiliary model which is often referred to as the score generator.

For the purpose of illustration, let a SV model be the structural model.
The SV model is the continuous time version of the Box-Cox SV model of Yu,
Yang and Zhang (2006), which contains many classical continuous SV models
as special cases, and is of the form:

dS(t) = α10S(t)dt+ S(t)[1 + δ(β10 + β12h(t))]1/(2δ)dB1(t),

dh(t) = −α22h(t)dt+ dB2(t).

Let the conditional density of the structural model (the Box-Cox SV model
in this case) is defined by

pt(Xt|Yt, θ),

where Xt = lnS(t), the true value of θ is θ0, θ0 ∈ Θ ⊂ <`θ with `θ being the
length of θ0 and Yt is a vector of lagged Xt. Denote the conditional density
of an auxiliary model by

ft(Xt|Yt, β), β ∈ R ⊂ <`β .

Further define the expected score of the auxiliary model under the structural
model as
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m(θ, β) =

∫
· · ·
∫

∂

∂β
ln f(x|y, β)p(x|y, θ)p(y|θ)dxdy.

Obviously, in the context of the SV model, the integration cannot be solved
analytically since neither p(x|y, θ) nor p(y|θ) has a closed form expression.
However, it is easy to simulate from an SV model so that one can approximate
the integral by Monte Carlo simulations. That is

m(θ, β) ≈ mN (θ, β) ≡ 1

N

N∑
τ=1

∂

∂β
ln f(X̂τ (θ)|Ŷτ (θ), β),

where {X̂τ , Ŷτ} are simulated from the structural model. The EMM estimator
is a minimum chi-squared estimator which minimizes the following quadratic
form,

θ̂n = arg min
θ∈Θ

m′N (θ, β̂n)(In)−1mN (θ, β̂n),

where β̂n is a quasi maximum likelihood estimator of the auxiliary model and
In is an estimate of

I0 = lim
n→∞

V ar

(
1√
n

n∑
t=1

{
∂

∂β
ln ft(xt|yt, β∗)

})

with β∗ being the pseudo true value of β. Under regularity conditions, Gallant
and Tauchen (1996) show that the EMM estimator is consistent and has the
following asymptotic normal distribution,

√
n(θ̂n − θ0)

d→ N

(
0,

∂

∂θ
m(θ0, β

∗)(I0)−1
∂

∂θ′
m(θ0, β

∗)

)
.

For specification testing, we have

Jn = nm′N (θ̂n, β̂n)(In)−1mN (θ̂n, β̂n)
d→ χ2

`β−`θ

under the null hypothesis that the structural model is correct. When a model
fails the above specification test one may wish to examine the quasi-t-ratios
and/or t-ratios to look for some suggestion as to what is wrong with the
structural model. The quasi-t-ratios are defined as

T̂n = S−1n
√
nmN (θ̂n, β̂n)

where Sn = [diag(In)]1/2. It is well known that the elements of T̂n are down-
ward biased in absolute value. To correct the bias one can use the t-ratios
defined by

T̃n = Q−1n
√
nmN (θ̂n, β̂n)

where
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Qn =

(
diag{In −

∂

∂θ′
mN (θ̂n, β̂n)[m′N (θ̂n, β̂n)(In)−1mN (θ̂n, β̂n)]−1

∂

∂θ
mN (θ̂n, β̂n)}

)1/2

.

Large quasi-t-ratios and t-ratios reveal the features of the data that the struc-
tural model cannot approximate.

Furthermore, Gallant and Tauchen (1996) show that if the auxiliary model
nests the data generating process, under regularity conditions the EMM esti-
mator has the same asymptotic variance as the maximum likelihood estimator
and hence is fully efficient. If the auxiliary model can closely approximate the
data generating process, the EMM estimator is nearly fully efficient (Gallant
and Long (1997) and Tauchen (1997)).

To choose an auxiliary model, the seminonparametric (SNP) density pro-
posed by Gallant and Tauchen (1989) can be used since its success has been
documented in many applications. As to SNP modeling, six out of eight tun-
ing parameters are to be selected, namely, Lu, Lg, Lr, Lp, Kz, and Ky. The
other two parameters, Iz and Ix, are irrelevant for univariate time series and
hence set to be 0. Lu determines the location transformation whereas Lg and
Lr determine the scale transformation. Altogether they determine the nature
of the leading term of the Hermite expansion. The other two parameters Kz

and Ky determine the nature of the innovation. To search for a good auxil-
iary model, one can use the Schwarz BIC criterion to move along an upward
expansion path until an adequate model is found, as outlined in Bansal et al
(1995). To preserve space we refer readers to Gallant and Tauchen (2001b) for
further discussion about the role of the tuning parameters and how to design
an expansion path to choose them.

While EMM has found a wide range of applications in financial time series,
Duffee and Stanton (2008) reported finite sample evidence against EMM when
financial time series are persistent. In particular, in the context of simple term
structure models, they showed that although EMM has the same asymptotic
efficiency as ML, the variance of EMM estimator in finite sample is too large,
which is difficult to accept in practice.

4.4 An empirical example

For the purposes of illustration, we fit the continuous time Box-Cox SV model
to daily prices of Microsoft. The stock price data consist of 3,778 observations
on the daily price of a share of Microsoft, adjusted for stock split, for the
period from March 13, 1986 to February 23, 2001. The same data have been
used in Gallant and Tauchen (2001a) to fit a continuous time LN-SV model.
For this reason, we use the same sets of tuning parameters in the SNP model
as in Gallant and Tauchen (2001a), namely,

(Lu, Lg, Lr, Lp,Kz, Iz,Ky, Iy) = (1, 1, 1, 1, 6, 0, 0, 0).

Fortran code and the date can be obtained from an anonymous ftp site at
ftp.econ.duke.edu. A EMM User Guide by Gallant and Tauchen (2001a) is
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available from the same site. To estimate the Box-Cox SV model, we only
needed to change the specification of the diffusion function in the subroutine
difuse in the fortran file emmuothr.f, i.e., “tmp1=DEXP( DMIN1 (tmp1,bnd))”
is changed to “tmp1=(1+ delta* DMIN1 (tmp1,bnd))**(0.5/delta)”. Table 2
reports the EMM estimates. Obviously, the volatility of Microsoft is very
persistent since the estimated mean reversion parameter is close to zero and
the estimate value of δ is not far away from 0, indicating that the estimated
Box-Cox SV is not very different from the LN-SV model model.

Table 2: EMM Estimate of the Continuous Time Box-Cox SV Model

α10 α22 β10 β12 δ χ2
6

0.4364 0.5649 -0.1094 0.2710 0.1367 13.895

5 Bayesian MCMC and Credit Risk Models

Credit derivatives market had experienced a fantastic growth before the global
financial meltdown in 2007. The size of the market had grew so much and
the credit risk management had been done so poorly in practice that the
impact of the financial crisis is so big. Not surprisingly, how to estimate credit
risk has received an increasing attention from academic researchers, industry
participants, policy makers and regulators.

A widely used approach to credit risk modelling in practice is the so-
called structural method. All structural credit risk models specify a dynamic
structure for the underlying firm’s asset and default boundary. Let V be the
firm’s asset process, r the risk-free interest rate, F the face value of a zero-
coupon debt that the firm issues with the time to maturity T . Merton (1974)
is the simplest structural model where Vt is assumed to follow a geometric
Brownian motion:

d lnVt = (µ− σ2/2)dt+ σdBt, V0 = c, (21)

The exact discrete time model, sampled with the step size h, is

lnVt+1 = (µ− σ2/2)h+ lnVt + σ
√
hεt, V0 = c, (22)

which contains a unit root.
There are two types of outstanding claims faced by a firm that is listed

in a stock exchange, an equity and a zero-coupon debt whose face value is F
maturing at T . The default occurs at the maturity date of debt in the event
that the issuer’s assets are less than the face value of the debt (ie VT < F ).
Under the assumption of (21) the firm’s equity can be priced with the Black-
Scholes formula as if it is a call option on the total asset value V of the firm
with the strike price of F and the maturity date T . Namely, the equity claim,
denoted by St, is
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St ≡ S(Vt;σ) = VtΦ(d1t)− Fe−r(T−t)Φ(d2t) (23)

where Φ(·) is the cumulative distribution function of the standard normal
variate,

d1t =
ln(Vt/F ) + (r + σ2/2)(T − t)

σ
√
T − t

,

and

d2t =
ln(Vt/F ) + (r − σ2/2)(T − t)

σ
√
T − t

.

Merton’s model can be used to evaluate private firm credit risk and the
credit spread of a risk corporate bond over the corresponding Treasure rate.
The credit spread is given by

C(Vt; θ) = − 1

T − τt
ln

(
Vt
F
Φ(−d1t) + e−r(T−τt)Φ(d2t)

)
− r. (24)

The default probability is given by

P (Vt; θ) = Φ

(
ln(F/Vt)− (µ− σ2/2)(T − τt)

σ
√
T − τt

)
. (25)

At a reasonably high frequency, St may be observed with errors due to the
presence of various market microstructure effects. This observation motivates
Duan and Fulop (2009) to consider the following generalization to Merton’s
model:

lnSt = lnS(Vt;σ) + δvt, vt ∼ N(0, 1). (26)

In a state-space framework, Equation (26) is an observation equation and
Equation (22) is a state equation. Unfortunately, the Kalman filter is not
applicable here since the observation equation is nonlinear.

Let X = (lnS1, · · · , lnSn)′, V = (lnV1, · · · , lnVn)′, and θ = (µ, σ, δ)′. The
likelihood function of (26) is given by

p(X; θ) =

∫
p(X,V; θ)dV =

∫
p(X|V;µ)p(V; θ)dV. (27)

In general this is a high-dimensional integral which does not have closed form
expression due to the non-linear dependence of lnSt on lnVt. Although in
this section, our main focus is the Bayesian MCMC methods, SML is possi-
ble. Indeed all the SML methods discussed in Section 3 are applicable here.
However, we will discuss a new set of SML methods – particle filters.

5.1 SML via particle filter

It is known that Kalman filter is an optimal recursive data processing algo-
rithm for processing series of measurements generated from a linear dynamic
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system. It is applicable any linear Gaussian state-space model where all rele-
vant conditional distributions are linear Gaussians. Particle filters, also known
as sequential Monte Carlo methods, extend the Kalman filter to nonlinear and
non-Gaussian state space models.

In a state space model, two equations have to be specified in the fully para-
metric manner. First, the state equation describes the evolution of the state
with time. Second, the measurement equation relates the noisy measurements
to the state. A recursive filtering approach means that received data can be
processed sequentially rather than as a batch so that it is not necessary to store
the complete data set nor to reprocess existing data if a new measurement
becomes available. Such a filter consists of essentially two stages: prediction
and updating. The prediction stage uses the system model to predict the state
density forward from one measurement time to the next. Since the state is
usually subject to unknown disturbances, prediction generally translates, de-
forms, and spreads the state density. The updating operation uses the latest
measurement to modify the prediction density. This is achieved using Bayes
theorem, which is the mechanism for updating knowledge about the target
state in the light of extra information from new data. When the model is
linear and Gaussian, the density in both stages is Gaussian and Kalman filter
gives analytical expressions to the mean and the co-variance. As a byproduct,
the full conditional distribution of measurements is available, facilitating the
calculation of the likelihood.

For nonlinear and non-Gaussain state space models, the density in neither
stage is not Gaussian any more and the optimal filter is not available ana-
lytically. Particle filter is a technique for implementing a recursive filter by
Monte Carlo simulations. The key idea is to represent the required density in
connection to prediction and updating by a set of random samples (known
as “particles”) with associated weights and to compute estimates based on
these samples and weights. As the number of samples becomes very large, this
simulation-based empirical distribution is equivalent the true distribution.

To fix the idea, assume that the nonlinear non-Gaussian state space model
is of the form, {

Yt = H(Xt, et)
Xt = F (Xt−1, ut),

(28)

where Xt is a k-dimensional state vector,6 ut is a l-dimensional white noise
sequence with density q(u), vt is a l-dimensional white noise sequence with
density r(v) and assumed uncorrelated with {us}ts=1, H and F are possibly
nonlinear functions. Let vt = G(Yt, Xt) and G′ is the derivative of G as
a function of Yt. The density of the initial state vector is assumed to be
p0(x). Denote Y1:k = {Y1, · · · , Yk}. The objective of the prediction is to obtain
p(Xt|Y1:t). It can be seen that

p(Xt|Y1:t−1) =

∫
p(Xt|Xt−1)p(Xt−1|Y1:t−1)dXt−1. (29)

6 In Merton’s model, Xt = lnVt, Yt = lnSt, et = σ
√
hεt, ut = δvt.
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At time step t, when a new measurement Yt becomes available, it may be used
to update the predictive density p(Xt|Y1:t−1) via Bayes rule in the updating
stage,

p(Xt|Y1:t) =
p(Yt|Xt)p(Xt|Y1:t−1)

p(Yt|Y1:t−1)
. (30)

Unfortunately, for the nonlinear non-Gaussian state-space model, the re-
cursive propagation in both stages is only a conceptual solution and cannot
be determined analytically. To deal with this problem, particle filtering al-
gorithm consists of recursive propagation of the weights and support points
when each measurement is received sequentially so that the true densities can
be approximated by the corresponding empirical density.

Various versions of particle filters have been proposed in the literature. In
this chapter we only summarize all the steps involved in Kitagawa’s algorithm
(Kitagawa, 1996):

1. Generate M l-dimensional particles from p0(x), f
(j)
0 for j = 1, . . . ,M .

2. Repeat the following steps for t = 1, . . . , n.

a) Generate M l-dimensional particles from q(u), u
(j)
t for j = 1, . . . ,M .

b) Compute p
(j)
t = F (f

(j)
t−1, u

(j)
t ) for j = 1, . . . ,M .

c) Compute α
(j)
t = r(G(Yt, p

(j)
t )) for j = 1, . . . ,M .

d) Re-sample {p(j)t }Mj=1 to get {f (j)t }Mj=1 with probabilities proportional

to {r(G(Yt, p
(j)
t ))× |G′(Yt, p(j)t )|}Mj=1.

Other particle filtering algorithms include sampling importance resampling
filter of Gordon, Salmond and Smith (1993), auxiliary sampling importance
resampling filter of Pitt and Shephard (1999a), and regularized particle filter
(Musso, Oudjane and LeGland, 2001).

To estimate the Merton’s model via ML, Duan and Fulop employed the
particle filtering method of Pitt (2002). Unlike the method proposed by Kita-

gawa (1995) which samples a point X
(m)
t when the system is advanced, Duan

and Fulop sampled a pair (V
(m)
t , V

(m)
t+1 ) at once when the system is advanced.

Since the resulting likelihood function is not smooth with respect to the pa-
rameters, to ensure a smooth surface for the likelihood function, Duan and
Fulop used the smooth bootstrap procedure for resampling of Pitt (2002).

Because the log-likelihood function can be obtained as a by-product of
the filtering algorithm, it can be maximized numerically over the parameter
space to obtain the SMLE. If M →∞, the log-likelihood value obtained from
simulations should converge to the true likelihood value. As a result, it is
expected that for a sufficiently large number of particles, the estimates that
maximize the approximated log-likelihood function are sufficiently close to the
true ML estimates.
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5.2 Bayesian MCMC Methods

The structure in the state-space model ensures the pivotal role played by Bayes
theorem in the recursive propagation. Not surprisingly, the requirement for the
updating of information on receipt of new measurements are ideally suited for
the Bayesian approach for statistical inference. In this chapter, we will show
that Bayesian methods provide a rigorous general approach to the dynamic
state estimation problem. Since many models in financial econometrics have
a state-space representation, Bayesian methods have received more and more
attentions in statistical analysis of financial time series.

The general idea of the Bayesian approach is to perform posterior computa-
tions, given the likelihood function and the prior distribution. MCMC is a class
of algorthims which enables one to obtain a correlated sample from a Morkov
chain whose stationary transition density is the same as the posterior distribu-
tion. There are certain advantages in the Bayesian MCMC method. First, as
a likelihood-based method, MCMC matches the efficiency of ML. Second, as
a by-product of parameter estimation, MCMC provides smoothed estimates
of latent variables because it augments the parameter space by including the
latent variables. Third, unlike the frequentist’s methods whose inference is al-
most always based on asymptotic arguments, inferences via MCMC are based
on the exact posterior distribution. This advantage is especially important
when the standard asymptotic theory is difficult to derive or the asymptotic
distribution does not provide satisfactory approximation to the finite sam-
ple distribution. As a trade-off, one has to specify the prior distribution. In
addition, with MCMC it is straightforward to obtain the exact posterior dis-
tribution of any transformation (linear or nonlinear) of model parameters and
latent variables, such as the credit spread and the default probability. There-
fore, the exact finite sample inference can easily be made in MCMC, whereas
the ML method necessitates the delta method to obtain the asymptotic distri-
bution. When the asymptotic distribution of the original parameters does not
work well, it is expected that the asymptotic distribution yielded by the delta
method may not work well. Fourth, numerical optimization is not needed in
MCMC. This advantage is of practical importance when the likelihood func-
tion is difficult to optimize numerically. Finally, the proposed method lends
itself easily to dealing with flexible specifications.

There are three disadvantages of the MCMC method. First, in order to ob-
tain the filtered estimate of the latent variable, a separate method is required.
This is in contrast with the ML method of Duan and Fulop (2009) where
the filtered estimate of the latent variable is obtained as a by-product. Sec-
ond, with the MCMC method the model has to be fully specified whereas the
MLE remains consistent even when the microstructure noise is nonparamet-
rically specified, and in this case, ML becomes quasi-ML. However, in recent
years, semiparametric MCMC methods have appeared in the literature. For
example, the flexibility of the error distribution may be accommodated by
using a Dirichelt process mixture (DPM) prior (see Ferguson (1973) for the
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detailed account of DMP, and Jensen and Maheu (2008) for an application
of DMP to volatility modeling). Finally, prior distributions have to be speci-
fied. In some cases, prior distributions may have important influences on the
posterior analysis but it is not so obvious to specify the prior distributions.

From the Bayesian viewpoint, we understand the specification of the struc-
tural credit risk model as a hierarchical structure of conditional distributions.
The hierarchy is specified by a sequence of three distributions, the conditional
distribution of lnSt| lnVt, δ, the conditional distribution of lnVt| lnVt−1, µ, σ,
and the prior distribution of θ. Hence, our Bayesian model consists of the
joint prior distribution of all unobservables, here the three parameters, µ, σ, δ,
and the unknown states, V, and the joint distribution of the observables, here
the sequence of contaminated log-equity prices X. The treatment of the la-
tent state variables V as the additional unknown parameters is the well known
data-augmentation technique originally proposed by Tanner and Wong (1987)
in the context of MCMC. Bayesian inference is then based on the posterior
distribution of the unobservables given the data. In the sequel, we will denote
the probability density function of a random variable θ by p(θ). By successive
conditioning, the joint prior density is

p(µ, σ, δ,V) = p(µ, σ, δ)p(lnV0)

n∏
t=1

p(lnVt| lnVt−1, µ, σ). (31)

We assume prior independence of the parameters µ, δ and σ. Clearly p(lnVt| lnVt−1, µ, σ)
is defined through the state equations (22). The likelihood p(X|µ, σ, δ,V) is
specified by the observation equations (26) and the conditional independence
assumption:

p(X|µ, σ, δ,V) =

n∏
t=1

p(lnSt| lnVt, δ). (32)

Then, by Bayes’ theorem, the joint posterior distribution of the unobservables
given the data is proportional to the prior times likelihood, i.e.,

p(µ, σ, δ,V|X) ∝ p(µ)p(σ)p(δ)p(lnV0)

n∏
t=1

p(lnVt| lnVt−1, µ, σ)

n∏
t=1

p(lnSt| lnVt, δ).

(33)
Without data augmentation, we need to deal with the intractable likeli-

hood function p(X|θ) which makes the direct analysis of the posterior density
p(θ|V) difficult. The particle filtering algorithm of Duan and Fulop (2009) can
be used to overcome the problem. With data augmentation, we focus on the
new posterior density p(θ,V|X) given in (33). Note that the new likelihood
function is p(X|θ,V) which is readily available analytically once the distri-
bution of εt is specified. Another advantage of using the data-augmentation
technique is that the latent state variables V are the additional unknown
parameters and hence we can make statistical inference about them.
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The idea behind the MCMC methods is to repeatedly sample from a
Markov chain whose stationary (multivariate) distribution is the (multivari-
ate) posterior density. Once the chain converges, the sample is regarded as
a correlated sample from the posterior density. By the ergodic theorem for
Markov chains, the posterior moments and marginal densities can be esti-
mated by averaging the corresponding functions over the sample. For exam-
ple, one can estimate the posterior mean by the sample mean, and obtain the
credible interval from the marginal density. When the simulation size is very
large, the marginal densities can be regarded to be exact, enabling exact finite
sample inferences. Since the latent state variables are in the parameter space,
MCMC also provides the exact solution to the smoothing problem of inferring
about the unobserved equity value.

While there are a number of MCMC algorithms available in the literature,
we only use the Gibbs sampler which samples each variate, one at a time,
from the full conditional distributions defined by (33). When all the variates
are sampled in a cycle, we have one sweep. The algorithm is then repeated
for many sweeps with the variates being updated with the most recent sam-
ples. With regularity conditions, the draws from the samplers converge to
draw from the posterior distribution at a geometric rate. For further informa-
tion about MCMC and its applications in econometrics, see Chib (2001) and
Johannes and Polson (2003).

Defining lnV−t by lnV1, . . . , lnVt−1, lnVt+1, . . . , lnVn, the Gibbs sampler
is summarized as

1. Initialize θ and V.
2. Sample lnVt from lnVt| lnV−t,X.
3. Sample σ|X,V, µ, δ.
4. Sample δ|X,V, µ, σ.
5. Sample µ|X,V, σ, δ.

Steps 2-5 forms one cycle. Repeating steps 2-5 for many thousands of times
yields the MCMC output. To mitigate the effect of initialization and to ensure
the full convergence of the chains, we discard the so-call burn-in samples. The
remaining samples are used to make inference.

It is easy to implement the Gibbs sampling for the credit risk model de-
fined above. One can make use of the all purpose Bayesian software package
WinBUGS. As shown in Meyer and Yu (2000) and Yu and Meyer (2006),
WinBUGS provides an idea framework to perform the Bayesian MCMC com-
putation when the model has a state-space form, whether it is nonlinear or
non-Gaussian or both. As the Gibbs sampler updates only one variable at a
time, it is referred as a single-move algorithm.

In the stochastic volatility literature, the single-move algorithm has been
criticized by Kim, Shephard, and Chib (1998) for lacking simulation efficiency
because the components of state variables are highly correlated. More efficient
MCMC algorithms, such as multi-move algorithms, can be developed for esti-
mating credit risk models. In fact, Shephard and Pitt (1997), Kim, Shephard,
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and Chib (1998), Chib, et al. (2002), Liesenfeld and Richard (2006) and Omori
et. al. (2007) have developed various multi-move algorithms to estimate uni-
variate and multivariate SV models. The idea of the multi-mover algorithms
is to sample the latent vector V in a single block.

5.3 An empirical application

For the purposes of illustration, we fit the credit risk model to daily prices
of AA a company from the Dow Jones Industrial Index. The daily equity
values are obtained from the CRSP database over year 2003 (the logarithmic
values are contained in a file named AALogS.txt). The initial maturity of debt
is 10 years. The debt is available from the balance sheet obtained from the
Compustat annual file. It is compounded for 10 years at the risk-free rate to
obtain F . The risk-free rate is obtained from the US Federal Reserve. Duan
and Fulop fitted the same model to the same data using SML via particle filter
and approximated the variance using the Fisher information matrix. Following
Huang and Yu (2009), we use the following independent prior for the three
system parameters: µ ∼ N(0.3, 4), δ ∼ IG(3, 0.0001), and σ ∼ IG(2.5, 0.025)
where IG is the inverse-gamma distribution.

WinBugs code (aa.odc) is used to implement the MCMC method based on
55,000 sweeps of which the first 5000 sweeps are thrown away. Table 3 reports
the estimates (the posterior means) and the standard errors (the posterior
standard errors). For the purpose of comparison, the SML estimates and their
asymptotic standard errors, obtained directly from Duan and Fulop (2009,
Table 1), are also reported. While the two sets of estimates are close to each
other, their standard errors are further away.

Table 3: MCMC and SML Estimates of the Credit Risk Model

µ σ δ × 100
Mean Std Err Mean Std Err Mean Std Err

Bayesian 0.3154 0.1689 0.1686 0.0125 0.5673 0.1225
SML 0.3130 0.1640 0.1589 0.0181 0.6820 0.2082

6 Resampling Methods and Term Structure Models

It is well known dynamic models are estimated with bias by standard esti-
mation methods, such as least squares (LS), maximum likelihood (ML) or
generalized method of moments (GMM). The bias was developed by Hur-
wicz (1950) for the autoregressive parameter in the context of dynamic dis-
crete time models. The percentage bias of the corresponding parameter, i.e.,
the mean reversion parameter, is much more pronounced in continuous time
models than their discrete time counterparts. On the other hand, estimation
is fundamentally important for many practical applications. For example, it
provides parameter estimators which are used directly for estimating prices of
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financial assets and derivatives. For another example, parameter estimation
serves as an important stage for the empirical analysis of specification and
comparative diagnostics. Not surprisingly, it has been found in the literature
that the bias in the mean reversion estimator has important implications for
the specification analysis of continuous time models (Pritsker, 1998) and for
pricing financial assets (Phillips and Yu, 2005a and 2009b). For instance, when
the true mean reversion parameter is 0.1 and 600 weekly observations (i.e. just
over 10 years of data) are available to estimate a one-factor square-root term
structure model (Cox, Ingersoll and Ross, 1985), the bias in the ML estimator
of the mean reversion parameter is 391.2% in an upwards direction. This es-
timation bias, together with the estimation errors and nonlinearity, produces
a 60.6% downward bias in the option price of a discount bond and 2.48%
downward bias in the discount bond price. The latter figures are comparable
in magnitude to the estimates of bias effects discussed in Hull (2000, Chapter
21.7). The biases would be even larger when less observations are available
and do not disappear even when using long spans of data that are currently
available. For example, when the true mean reversion parameter is 0.1 and
600 monthly observations (i.e. 50 years of data) are available to estimate the
square-root diffusion model, the bias in the ML estimator of the mean rever-
sion parameter is 84.5% in an upwards direction. This estimation bias implies
a 24.4% downward bias in the option price of a discount bond and a 1.0%
downward bias in the discount bond price.

In recent years, there have been interesting advances in developing ana-
lytical formulae to approximate the bias in certain model specifications. This
is typically obtained by estimating higher order terms in an asymptotic ex-
pansion of the bias. For example, in the Vasicek term structure model with a
known µ,

dXt = κ(µ−Xt)dt+ σdBt, X0 ∼ N(µ, σ2/(2κ))

Yu (2009) showed that the bias in the MLE of κ can be approximated by

1

2T

(
3 + e2κh

)
− 2(1− e−2nκh)

Tn(1− e−2κh)
.

When µ has to be estimated in the Vasicek model, Tang and Chen (2009)
showed that the bias in the MLE of κ can be approximated by

E(κ̂)− κ =
1

2T
(e2κh + 2eκh + 5).

Interestingly, the same bias formula applies to a QML estimate of κ, developed
by Nowman (1997), under the CIR model, as shown in Tang and Chen (2009).

For more complicated models, unfortunately, the approximate bias formula
is not available. To reduce this bias in parameter estimation and in pricing
contingent claims, Phillips and Yu (2005a) proposed a new jackknife proce-
dure. Phillips and Yu (2005a) show that the jackknife method always trades
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off the gain that may be achieved in bias reduction with a loss that arises
through increased variance.

The bootstrap method of Efron (1979) is another way to reduce the bias
via simulation. It was shown to be an effective method for bias correction
(Hall, 1992) and was illustrated in the parameter estimation in the context
of continuous time model in Tang and Chen (2009). Relative to the jackknife
method, it does not significantly increase the variance. Relative to the two
simulation-based procedures that will be discussed below, however, bootstrap
seems to use less information and hence is expected to be less efficient.

6.1 Indirect inference (II) and median unbiased estimation (MUE)

Resampling methods may achieve bias reduction as well as variance reduc-
tion. In this chapter, two simulation-based resampling methods are discussed,
indirect inference (II) and median unbiased estimation (MUE).

II and MUE are simulation-based estimation procedures and can be un-
derstood as a generalization of the simulated method of moments approach of
Duffie and Singleton (1993). MUE was first introduced by Andrews (1993). II
was first introduced by Smith (1993) and coined with the term by Gouriéroux,
Monfort, and Renault (1993). II was originally proposed to deal with situa-
tions where the moments or the likelihood function of the true model are
difficult to deal with (and hence traditional methods such as GMM and ML
are difficult to implement), but the true model is amenable to data simulation.
Because many continuous time models are easy to simulate but difficult to ob-
tain moment and likelihood functions, the II procedure has some convenient
advantages in working with continuous time models in finance.

The II and MUE procedures can have good small sample properties of
parameter estimates, as shown by Andrews (1993), MacKinnon and Smith
(1996), Monfort (1996), Gouriéroux, Renault, Touzi (2000) in the time series
context and by Gouriéroux, Phillips and Yu (2005) in the panel context. The
idea why II can remove the bias goes as follows. Whenever a bias occurs in an
estimate and from whatever source, this bias will also be present in the same
estimate obtained from data, which are of the same structure of the original
data, simulated from the model for the same reasons. Hence, the bias can
be calculated via simulations. The method therefore offers some interesting
opportunities for bias correction and the improvement of finite sample prop-
erties in continuous time parameter estimation, as shown in Phillips and Yu
(2009a).

To fix the idea of II/MUE for parameter estimation, consider the Vasicek
model which is typically used to describe the movement of the short term
interest rate. Suppose we need to estimate the parameter κ in:

dX(t) = κ(µ−X(t))dt+ σ(X(t)) dW (t),

from observations {Xh, · · · , Xnh}. An initial estimator of κ can be obtained,
for example, by applying the Euler scheme to {Xh, · · · , Xnh} (call it κ̂n).
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Such an estimator is involved with the discretization bias (due to the use of
the Euler scheme) as well as a finite sample estimation bias (due to the poor
finite sample property of ML in the near-unit-root situation).

Given a parameter choice κ, we apply the Euler scheme with a much
smaller step size than h (say δ = h/100), which leads to

X̃k
t+δ = κ(µ− X̃k

t )h+ X̃k
t + σ(X̃k

t )
√
δεt+δ,

where

t = 0, δ, · · · , h(= 100δ)︸ ︷︷ ︸, h+ δ, · · · , 2h(= 200δ)︸ ︷︷ ︸, 2h+ δ, · · · , nh.

This sequence may be regarded as a nearly exact simulation from the contin-
uous time OU model for small δ. We then choose every (h/δ)th observation
to form the sequence of {X̃k

ih}ni=1, which can be regarded as data simulated
directly from the OU model with the (observationally relevant) step size h.7

Let {X̃k
h , · · · , X̃k

nh} be data simulated from the true model, where k =
1, · · · ,K with K being the number of simulated paths. It should be empha-
sized that it is important to choose the number of simulated observations and
the sampling interval to be the same as the number of observations and the
sampling interval in the observed sequence for the purpose of the bias calibra-
tion. Another estimator of κ can be obtained by applying the Euler scheme to
{Xk

h , · · · , Xk
nh} (call it κ̃kn). Such an estimator and hence the expected value

of them across simulated paths is naturally dependent on the given parameter
choice κ.

The central idea in II/MUE is to match the parameter obtained from the
actual data with that obtained from the simulated data. In particular, the II
estimator and median unbiased estimator of κ solve, respectively,

κ̂n =
1

K

K∑
h=1

κ̃kn(κ) or κ̂n = ρ̂0.5(κ̃kn(κ)), (34)

where ρ̂τ is the τth sample quantile. In the case where K tends to infinity,
the II estimator and median unbiased estimator solve

κ̂n = E(κ̃kn(κ)) or κ̂n = ρ0.5(κ̃kn(κ)) (35)

where E(κ̃kn(κ)) is called the mean binding function, and ρ0.5(κ̃kn(κ)) is the
median binding function, i.e.,

bn(κ) = E(κ̃kn(κ)), or bN (κ) = ρ0.5(κ̃kn(κ)).

It is a finite sample functional relating the bias to κ. In the case where bn is
invertible, the II estimator and median unbiased estimator are given by:

7 If the transition density of Xt+h|Xt for the continuous time model is analytically
available, exact simulation can be directly obtained. In this case, the Euler scheme
at a finer grid is not necessary.
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κ̂IIn = b−1n (κ̂n). (36)

Typically, the binding functions cannot be computed analytically in either
case. That is why II/MUE needs to calculate the binding functions via sim-
ulations. While often used in the literature for the binding function is the
mean, the median has certain advantages over the mean. First, the median
is more robust to outliers than the mean. Second, it is easier to obtain the
unbiased property via the median. In particular, while the linearity of bn(κ)
gives rise of the mean-unbiasedness in κ̂IIn , only monotonicity is needed for
bn(κ) to ensure the median-unbiasedness (Phillips and Yu, 2009b).

There are several advantages in the II/MUE procedure relative to the jack-
knife procedure. First, II is more effective on removing the bias in parameter
estimates. Phillips and Yu (2009a) provided evidence to support this supe-
riority of II. Second, the bias reduction may be achieved often without an
increase in variance. In extreme cases of a root near unity, the variance of
II/MUE can be even smaller than that of ML (Phillips and Yu (2009a)). To
see this, note that equation (36) implies:

V ar(κ̂IIn ) =

(
∂bn
∂κ

)−1
V ar(κ̂ML

n )

(
∂bn
∂κ′

)−1
.

When ∂bn/∂κ > 1, the II/MUE estimator has a smaller variance than MLE.
Gouriéroux, Renault, Touzi (2000) discussed the relationship among II, MUE
and bootstrap in the context of bias correction.

A disadvantage in the II/MUE procedure is the high computational cost.
It is expected that with the continuing explosive growth in computing power,
such a drawback is of less concern. Nevertheless, to reduce the computational
cost, one can choose a fine grid of discrete points of κ and obtain the binding
function on the grid. Then standard interpolation and extrapolation methods
can be used to approximate the binding functions at any point.

As pointed out before, since prices of contingent-claims are always non-
linear transformations of the system parameters, insertion of even unbiased
estimators into the pricing formulae will not assure unbiased estimation of a
contingent-claim price. The stronger the nonlinearity, the larger the bias. As
a result, plugging-in the II/MUE estimates into the pricing formulae may still
yield an estimate of the price with unsatisfactory finite sample performances.
This feature was illustrated in a the context of various continuous time mod-
els and contingent claims in Phillips and Yu (2009d). To improve the finite
sample properties of the contingent price estimate, Phillips and Yu (2009b)
generalized the II/MUE procedure so that it is applied to the quantity of
interest directly.

To fix the idea, suppose θ is the scalar parameter in the continuous time
model on which the price of a contingent claim, P (θ), is based. Denote by θ̂ML

n

the MLE of θ that is obtained from the actual data, and write P̂ML
n = P (θ̂ML

n )

be the ML estimate of P . P̂ML
n involves finite sample estimation bias due to the
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non-linearity of the pricing function P in θ, or the use of the biased estimate
θ̂ML
n , or both these effects. The II/MUE approach involves the following steps.

1. Given a value for the contingent-claim price p, compute P−1(p) (call it
θ(p)), where P−1(·) is the inverse of the pricing function P (θ).

2. Let S̃k(p) = {S̃k1 , S̃k2 , · · · , S̃kT } be data simulated from the time series
model (16) given θ(p), where k = 1, . . . ,K with K being the number of
simulated paths. As argued above, we choose the number of observations
in S̃k(p) to be the same as the number of actual observations in S for the
express purpose of finite sample bias calibration.

3. Obtain φ̃ML,k
n (p), the MLE of θ, from the k’th simulated path, and cal-

culate P̃ML,k
n (p) = P (φ̃ML,k

n (p)).

4. Choose p so that the average behavior of P̃ML,k
n (p) is matched with P̂ML

n

to produce a new bias corrected estimate.

6.2 An empirical application

This empirical application compares the ML method and the simulation-based
methods for estimating the mean reversion parameter in a context of Vasicek
term structure model. The dataset of a short term interest rate series involves
the Federal fund rate and is available from the H-15 Federal Reserve Statistical
Release. It is sampled monthly and has 432 observations covering the period
from January 1963 to December 1998. The same data were used in Ait-Sahalia
(1999) and are contained in a file named FF.txt.

Matlab code, simVasicek.m, is used to obtain the ML, II and median un-
biased estimates of κ in the Vasiecek model. Table 4 reports these estimates.
The ML estimate is about twice as large as the II estimate. The II estimate
is similar to the median unbiased estimate.

Table 4: ML, II and median unbiased estimates of κ in the Vasicek model

MLE II MUE
κ̂ 0.2613 0.1358 0.1642

7 Conclusions

Simulation-based estimation of financial time series model has been ongoing
in the financial econometric literature and the empirical finance literature for
more than one decade. Some new developments have been made and some
existing methods have been refined with the increasing complexity in models.
More and more attention have been paid to the simulation-based methods
in recent years. Researchers in empirical finance have sought to use these
methods in practical applications in an increasing scale. We expect the need
for these methods to grow further as the financial industry continues to expand
and datasets become richer.
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