376,397 research outputs found

    Successful Mobile Application Development: Towards a Taxonomy of Domain-Specific Process Models and Methodologies

    Get PDF
    Mobile applications and mobile application development issues receive an increasing attention for practitioners and academics. The development of mobile applications is connected with a number of domain-specific issues and challenges (e.g., fulfilment of customer requirements or the prevention of high development costs). Consequently, the decision of the most effective process model to develop a mobile application plays a crucial role for software and mobile application development teams. With the help of a structured taxonomy-building methodology, we contribute to the extant literature by creating and presenting a taxonomy for process models and methodologies in software engineering and the mobile application development domain. The taxonomy enrich the existing knowledge base and can help mobile application developers to choose the most suitable process model or methodology. Based on our examination, our results indicate new directions for mobile application research and implications for mobile application development

    HCPC: Human centric program comprehension by grouping static execution scenarios

    Get PDF
    New members of a software team can struggle to locate user requirements if proper software engineering principles are not practiced. Reading through code, finding relevant methods, classes and files take a significant portion of software development time. Many times developers have to fix issues in code written by others. Having a good tool support for this code browsing activity can reduce human effort and increase overall developers' productivity. To help program comprehension activities, building an abstract code summary of a software system from the call graph is an active research area. A call graph is a visual representation of caller-callee relationships between different methods of a software project. Call graphs can be difficult to comprehend for a larger code-base. The motivation is to extract the essence from the call graph by finding execution scenarios from a call graph and then cluster them together by concentrating the information in the code-base. Later, different techniques are applied to label nodes in the abstract code summary tree. In this thesis, we focus on static call graphs for creating an abstract code summary tree as it clusters all possible program scenarios and groups similar scenarios together. Previous work on static call graph clusters execution paths and uses only one information retrieval technique without any feedback from developers. First, to advance existing work, we introduced new information retrieval techniques alongside human-involved evaluation. We found that developers prefer node labels generated by terms in method names with TFIDF (term frequency-inverse document frequency). Second, from our observation, we introduced two new types of information (text description using comments and execution patterns) for abstraction nodes to provide better overview. Finally, we introduced an interactive software tool which can be used to browse the code-base in a guided way by targeting specific units of the source code. In the user study, we found developers can use our tool to overview a project alongside finding help for doing particular jobs such as locating relevant files and understanding relevant domain knowledge

    Sustainable Design of Buildings using Semantic BIM and Semantic Web Services

    Get PDF
    In response to the growing concerns about climate change and the environment, sustainable design of buildings is increasingly demanded by building owners and users. However, fast evaluation of various design options and identification of the optimized design requires application of design analysis tools such as energy modeling, daylight simulations, and natural ventilation analysis software. Energy analysis requires access to distributed sources of information such as building element material properties provided by designers, mechanical equipment information provided by equipment manufacturers, weather data provided by weather reporting agencies, and energy cost data from energy providers. Gathering energy related information from different sources and inputting the information to an energy analysis application is a time consuming process. This causes delays and increases the time for comparing different design alternatives. This paper discusses how Semantic Web technology can facilitate information collection from several sources for energy analysis. Semantic Web enables sharing, accessing, and combining information over the Internet in a machine process-able format. This would free building designers to concentrate on building design optimization rather than spending time on data preparation and manual entry into energy analysis applications

    Reducing the Barrier to Entry of Complex Robotic Software: a MoveIt! Case Study

    Full text link
    Developing robot agnostic software frameworks involves synthesizing the disparate fields of robotic theory and software engineering while simultaneously accounting for a large variability in hardware designs and control paradigms. As the capabilities of robotic software frameworks increase, the setup difficulty and learning curve for new users also increase. If the entry barriers for configuring and using the software on robots is too high, even the most powerful of frameworks are useless. A growing need exists in robotic software engineering to aid users in getting started with, and customizing, the software framework as necessary for particular robotic applications. In this paper a case study is presented for the best practices found for lowering the barrier of entry in the MoveIt! framework, an open-source tool for mobile manipulation in ROS, that allows users to 1) quickly get basic motion planning functionality with minimal initial setup, 2) automate its configuration and optimization, and 3) easily customize its components. A graphical interface that assists the user in configuring MoveIt! is the cornerstone of our approach, coupled with the use of an existing standardized robot model for input, automatically generated robot-specific configuration files, and a plugin-based architecture for extensibility. These best practices are summarized into a set of barrier to entry design principles applicable to other robotic software. The approaches for lowering the entry barrier are evaluated by usage statistics, a user survey, and compared against our design objectives for their effectiveness to users

    A Shared Ontology Approach to Semantic Representation of BIM Data

    Get PDF
    Architecture, engineering, construction and facility management (AEC-FM) projects involve a large number of participants that must exchange information and combine their knowledge for successful completion of a project. Currently, most of the AEC-FM domains store their information about a project in text documents or use XML, relational, or object-oriented formats that make information integration difficult. The AEC-FM industry is not taking advantage of the full potential of the Semantic Web for streamlining sharing, connecting, and combining information from different domains. The Semantic Web is designed to solve the information integration problem by creating a web of structured and connected data that can be processed by machines. It allows combining information from different sources with different underlying schemas distributed over the Internet. In the Semantic Web, all data instances and data schema are stored in a graph data store, which makes it easy to merge data from different sources. This paper presents a shared ontology approach to semantic representation of building information. The semantic representation of building information facilitates finding and integrating building information distributed in several knowledge bases. A case study demonstrates the development of a semantic based building design knowledge base

    Integrating Distributed Sources of Information for Construction Cost Estimating using Semantic Web and Semantic Web Service technologies

    Get PDF
    A construction project requires collaboration of several organizations such as owner, designer, contractor, and material supplier organizations. These organizations need to exchange information to enhance their teamwork. Understanding the information received from other organizations requires specialized human resources. Construction cost estimating is one of the processes that requires information from several sources including a building information model (BIM) created by designers, estimating assembly and work item information maintained by contractors, and construction material cost data provided by material suppliers. Currently, it is not easy to integrate the information necessary for cost estimating over the Internet. This paper discusses a new approach to construction cost estimating that uses Semantic Web technology. Semantic Web technology provides an infrastructure and a data modeling format that enables accessing, combining, and sharing information over the Internet in a machine processable format. The estimating approach presented in this paper relies on BIM, estimating knowledge, and construction material cost data expressed in a web ontology language. The approach presented in this paper makes the various sources of estimating data accessible as Simple Protocol and Resource Description Framework Query Language (SPARQL) endpoints or Semantic Web Services. We present an estimating application that integrates distributed information provided by project designers, contractors, and material suppliers for preparing cost estimates. The purpose of this paper is not to fully automate the estimating process but to streamline it by reducing human involvement in repetitive cost estimating activities

    Integrating case-based reasoning and hypermedia documentation: an application for the diagnosis of a welding robot at Odense steel shipyard

    No full text
    Reliable and effective maintenance support is a vital consideration for the management within today's manufacturing environment. This paper discusses the development of a maintenance system for the world's largest robot welding facility. The development system combines a case-based reasoning approach for diagnosis with context information, as electronic on-line manuals, linked using open hypermedia technology. The work discussed in this paper delivers not only a maintenance system for the robot stations under consideration, but also a design framework for developing maintenance systems for other similar applications
    corecore