100 research outputs found

    Achieving Covert Communication With A Probabilistic Jamming Strategy

    Full text link
    In this work, we consider a covert communication scenario, where a transmitter Alice communicates to a receiver Bob with the aid of a probabilistic and uninformed jammer against an adversary warden's detection. The transmission status and power of the jammer are random and follow some priori probabilities. We first analyze the warden's detection performance as a function of the jammer's transmission probability, transmit power distribution, and Alice's transmit power. We then maximize the covert throughput from Alice to Bob subject to a covertness constraint, by designing the covert communication strategies from three different perspectives: Alice's perspective, the jammer's perspective, and the global perspective. Our analysis reveals that the minimum jamming power should not always be zero in the probabilistic jamming strategy, which is different from that in the continuous jamming strategy presented in the literature. In addition, we prove that the minimum jamming power should be the same as Alice's covert transmit power, depending on the covertness and average jamming power constraints. Furthermore, our results show that the probabilistic jamming can outperform the continuous jamming in terms of achieving a higher covert throughput under the same covertness and average jamming power constraints

    Achieving Covert Wireless Communications Using a Full-Duplex Receiver

    Full text link
    Covert communications hide the transmission of a message from a watchful adversary while ensuring a certain decoding performance at the receiver. In this work, a wireless communication system under fading channels is considered where covertness is achieved by using a full-duplex (FD) receiver. More precisely, the receiver of covert information generates artificial noise with a varying power causing uncertainty at the adversary, Willie, regarding the statistics of the received signals. Given that Willie's optimal detector is a threshold test on the received power, we derive a closed-form expression for the optimal detection performance of Willie averaged over the fading channel realizations. Furthermore, we provide guidelines for the optimal choice of artificial noise power range, and the optimal transmission probability of covert information to maximize the detection errors at Willie. Our analysis shows that the transmission of artificial noise, although causes self-interference, provides the opportunity of achieving covertness but its transmit power levels need to be managed carefully. We also demonstrate that the prior transmission probability of 0.5 is not always the best choice for achieving the maximum possible covertness, when the covert transmission probability and artificial noise power can be jointly optimized.Comment: 13 pages, 11 figures, Accepted for publication in IEEE Transactions on Wireless Communication
    • …
    corecore