277 research outputs found

    Covert Communication Achieved by A Greedy Relay in Wireless Networks

    Get PDF
    Covert wireless communication aims to hide the very existence of wireless transmissions in order to guarantee a strong security in wireless networks. In this paper, we examine the possibility and achievable performance of covert communication in amplify-and-forward one-way relay networks. Specifically, the relay is greedy and opportunistically transmits its own information to the destination covertly on top of forwarding the source's message, while the source tries to detect this covert transmission to discover the illegitimate usage of the resource (e.g., power and spectrum) allocated only for the purpose of forwarding the source's information. We propose two strategies for the relay to transmit its covert information, namely rate-control and power-control transmission schemes, for which the source's detection limits are analyzed in terms of detection error probability and the achievable effective covert rates from the relay to destination are derived. Our examination determines the conditions under which the rate-control transmission scheme outperforms the power-control transmission scheme, and vice versa, which enables the relay to achieve the maximum effective covert rate. Our analysis indicates that the relay has to forward the source's message to shield its covert transmission and the effective covert rate increases with its forwarding ability (e.g., its maximum transmits power)

    Anonymous Networking amidst Eavesdroppers

    Full text link
    The problem of security against timing based traffic analysis in wireless networks is considered in this work. An analytical measure of anonymity in eavesdropped networks is proposed using the information theoretic concept of equivocation. For a physical layer with orthogonal transmitter directed signaling, scheduling and relaying techniques are designed to maximize achievable network performance for any given level of anonymity. The network performance is measured by the achievable relay rates from the sources to destinations under latency and medium access constraints. In particular, analytical results are presented for two scenarios: For a two-hop network with maximum anonymity, achievable rate regions for a general m x 1 relay are characterized when nodes generate independent Poisson transmission schedules. The rate regions are presented for both strict and average delay constraints on traffic flow through the relay. For a multihop network with an arbitrary anonymity requirement, the problem of maximizing the sum-rate of flows (network throughput) is considered. A selective independent scheduling strategy is designed for this purpose, and using the analytical results for the two-hop network, the achievable throughput is characterized as a function of the anonymity level. The throughput-anonymity relation for the proposed strategy is shown to be equivalent to an information theoretic rate-distortion function

    UAV Relay Assisted Cooperative Jamming for Covert Communications over Rician Fading

    Get PDF
    Covert communication can hide the legitimate transmission from unauthorized eavesdropping. Benefiting from the deployment flexibility, unmanned aerial vehicles (UAVs) can be utilized to enhance communication confidentiality. In this correspondence, we consider a covert communication network with the aid of a full-duplex UAV relay, which is employed to help the transmission and confuse the warden. The warden adopts a radiometer to detect the covert transmission. We first find the optimal detection threshold and calculate the minimum detection error probability. Furthermore, a closed-form expression of outage probability via UAV relaying is derived over Rician fading. Then, a power optimization problem is formulated to maximize the effective convert throughput with covertness constraint. Numerical results illustrate that the cooperative jamming can disrupt the warden, and the optimal power tradeoff can guarantee the covert transmission effectively

    Cooperative Jamming and Relay Selection for Covert Communications

    Full text link
    This paper investigates the covert communications via cooperative jamming and relay selection in a wireless relay system, where a source intends to transmit a message to its destination with the help of a selected relay, and a warden attempts to detect the existence of wireless transmissions from both the source and relay, while friendly jammers send jamming signals to prevent warden from detecting the transmission process. To this end, we first propose two relay selection schemes, namely random relay selection (RRS) and max-min relay selection (MMRS), as well as their corresponding cooperative jamming (CJ) schemes for ensuring covertness in the system. We then provide theoretical modeling for the covert rate performance under each relay selection scheme and its CJ scheme and further explore the optimal transmit power controls of both the source and relay for covert rate maximization. Finally, extensive simulation/numerical results are presented to validate our theoretical models and also to illustrate the covert rate performance of the relay system under cooperative jamming and relay selection
    • …
    corecore