64 research outputs found

    ZASTOSOWANIE METOD STEGANOGRAFICZNYCH DO ATAKÓW W SYSTEMACH INFORMACYJNO-KOMUNIKACYJNYCH

    Get PDF
    An analysis of steganography methods that are can be potentially used as instruments in attacks on information and communication systems is presented. The possible solutions to ensure resilience to such attacks are presented.W artykułe został przedstawiony przegląd istniejących i potencjalnie dostępnych technik steganograficznych, które mogą zostać użyte jako narzędzia do ataków na systemy informacyjne i komunikacyjne. Podano możliwe sposoby zapewnienia ochrony przed takimi atakami

    Detection and Mitigation of Steganographic Malware

    Get PDF
    A new attack trend concerns the use of some form of steganography and information hiding to make malware stealthier and able to elude many standard security mechanisms. Therefore, this Thesis addresses the detection and the mitigation of this class of threats. In particular, it considers malware implementing covert communications within network traffic or cloaking malicious payloads within digital images. The first research contribution of this Thesis is in the detection of network covert channels. Unfortunately, the literature on the topic lacks of real traffic traces or attack samples to perform precise tests or security assessments. Thus, a propaedeutic research activity has been devoted to develop two ad-hoc tools. The first allows to create covert channels targeting the IPv6 protocol by eavesdropping flows, whereas the second allows to embed secret data within arbitrary traffic traces that can be replayed to perform investigations in realistic conditions. This Thesis then starts with a security assessment concerning the impact of hidden network communications in production-quality scenarios. Results have been obtained by considering channels cloaking data in the most popular protocols (e.g., TLS, IPv4/v6, and ICMPv4/v6) and showcased that de-facto standard intrusion detection systems and firewalls (i.e., Snort, Suricata, and Zeek) are unable to spot this class of hazards. Since malware can conceal information (e.g., commands and configuration files) in almost every protocol, traffic feature or network element, configuring or adapting pre-existent security solutions could be not straightforward. Moreover, inspecting multiple protocols, fields or conversations at the same time could lead to performance issues. Thus, a major effort has been devoted to develop a suite based on the extended Berkeley Packet Filter (eBPF) to gain visibility over different network protocols/components and to efficiently collect various performance indicators or statistics by using a unique technology. This part of research allowed to spot the presence of network covert channels targeting the header of the IPv6 protocol or the inter-packet time of generic network conversations. In addition, the approach based on eBPF turned out to be very flexible and also allowed to reveal hidden data transfers between two processes co-located within the same host. Another important contribution of this part of the Thesis concerns the deployment of the suite in realistic scenarios and its comparison with other similar tools. Specifically, a thorough performance evaluation demonstrated that eBPF can be used to inspect traffic and reveal the presence of covert communications also when in the presence of high loads, e.g., it can sustain rates up to 3 Gbit/s with commodity hardware. To further address the problem of revealing network covert channels in realistic environments, this Thesis also investigates malware targeting traffic generated by Internet of Things devices. In this case, an incremental ensemble of autoencoders has been considered to face the ''unknown'' location of the hidden data generated by a threat covertly exchanging commands towards a remote attacker. The second research contribution of this Thesis is in the detection of malicious payloads hidden within digital images. In fact, the majority of real-world malware exploits hiding methods based on Least Significant Bit steganography and some of its variants, such as the Invoke-PSImage mechanism. Therefore, a relevant amount of research has been done to detect the presence of hidden data and classify the payload (e.g., malicious PowerShell scripts or PHP fragments). To this aim, mechanisms leveraging Deep Neural Networks (DNNs) proved to be flexible and effective since they can learn by combining raw low-level data and can be updated or retrained to consider unseen payloads or images with different features. To take into account realistic threat models, this Thesis studies malware targeting different types of images (i.e., favicons and icons) and various payloads (e.g., URLs and Ethereum addresses, as well as webshells). Obtained results showcased that DNNs can be considered a valid tool for spotting the presence of hidden contents since their detection accuracy is always above 90% also when facing ''elusion'' mechanisms such as basic obfuscation techniques or alternative encoding schemes. Lastly, when detection or classification are not possible (e.g., due to resource constraints), approaches enforcing ''sanitization'' can be applied. Thus, this Thesis also considers autoencoders able to disrupt hidden malicious contents without degrading the quality of the image

    Secure covert communications over streaming media using dynamic steganography

    Get PDF
    Streaming technologies such as VoIP are widely embedded into commercial and industrial applications, so it is imperative to address data security issues before the problems get really serious. This thesis describes a theoretical and experimental investigation of secure covert communications over streaming media using dynamic steganography. A covert VoIP communications system was developed in C++ to enable the implementation of the work being carried out. A new information theoretical model of secure covert communications over streaming media was constructed to depict the security scenarios in streaming media-based steganographic systems with passive attacks. The model involves a stochastic process that models an information source for covert VoIP communications and the theory of hypothesis testing that analyses the adversary‘s detection performance. The potential of hardware-based true random key generation and chaotic interval selection for innovative applications in covert VoIP communications was explored. Using the read time stamp counter of CPU as an entropy source was designed to generate true random numbers as secret keys for streaming media steganography. A novel interval selection algorithm was devised to choose randomly data embedding locations in VoIP streams using random sequences generated from achaotic process. A dynamic key updating and transmission based steganographic algorithm that includes a one-way cryptographical accumulator integrated into dynamic key exchange for covert VoIP communications, was devised to provide secure key exchange for covert communications over streaming media. The discrete logarithm problem in mathematics and steganalysis using t-test revealed the algorithm has the advantage of being the most solid method of key distribution over a public channel. The effectiveness of the new steganographic algorithm for covert communications over streaming media was examined by means of security analysis, steganalysis using non parameter Mann-Whitney-Wilcoxon statistical testing, and performance and robustness measurements. The algorithm achieved the average data embedding rate of 800 bps, comparable to other related algorithms. The results indicated that the algorithm has no or little impact on real-time VoIP communications in terms of speech quality (< 5% change in PESQ with hidden data), signal distortion (6% change in SNR after steganography) and imperceptibility, and it is more secure and effective in addressing the security problems than other related algorithms

    Efficient and Robust Video Steganography Algorithms for Secure Data Communication

    Get PDF
    Over the last two decades, the science of secretly embedding and communicating data has gained tremendous significance due to the technological advancement in communication and digital content. Steganography is the art of concealing secret data in a particular interactive media transporter such as text, audio, image, and video data in order to build a covert communication between authorized parties. Nowadays, video steganography techniques are important in many video-sharing and social networking applications such as Livestreaming, YouTube, Twitter, and Facebook because of noteworthy developments in advanced video over the Internet. The performance of any steganography method, ultimately, relies on the imperceptibility, hiding capacity, and robustness against attacks. Although many video steganography methods exist, several of them lack the preprocessing stages. In addition, less security, low embedding capacity, less imperceptibility, and less robustness against attacks are other issues that affect these algorithms. This dissertation investigates and analyzes cutting edge video steganography techniques in both compressed and raw domains. Moreover, it provides solutions for the aforementioned problems by proposing new and effective methods for digital video steganography. The key objectives of this research are to develop: 1) a highly secure video steganography algorithm based on error correcting codes (ECC); 2) an increased payload video steganography algorithm in the discrete wavelet domain based on ECC; 3) a novel video steganography algorithm based on Kanade-Lucas-Tomasi (KLT) tracking and ECC; 4) a robust video steganography algorithm in the wavelet domain based on KLT tracking and ECC; 5) a new video steganography algorithm based on the multiple object tracking (MOT) and ECC; and 6) a robust and secure video steganography algorithm in the discrete wavelet and discrete cosine transformations based on MOT and ECC. The experimental results from our research demonstrate that our proposed algorithms achieve higher embedding capacity as well as better imperceptibility of stego videos. Furthermore, the preprocessing stages increase the security and robustness of the proposed algorithms against attacks when compared to state-of-the-art steganographic methods

    Secure digital documents using Steganography and QR Code

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University LondonWith the increasing use of the Internet several problems have arisen regarding the processing of electronic documents. These include content filtering, content retrieval/search. Moreover, document security has taken a centre stage including copyright protection, broadcast monitoring etc. There is an acute need of an effective tool which can find the identity, location and the time when the document was created so that it can be determined whether or not the contents of the document were tampered with after creation. Owing the sensitivity of the large amounts of data which is processed on a daily basis, verifying the authenticity and integrity of a document is more important now than it ever was. Unsurprisingly document authenticity verification has become the centre of attention in the world of research. Consequently, this research is concerned with creating a tool which deals with the above problem. This research proposes the use of a Quick Response Code as a message carrier for Text Key-print. The Text Key-print is a novel method which employs the basic element of the language (i.e. Characters of the alphabet) in order to achieve authenticity of electronic documents through the transformation of its physical structure into a logical structured relationship. The resultant dimensional matrix is then converted into a binary stream and encapsulated with a serial number or URL inside a Quick response Code (QR code) to form a digital fingerprint mark. For hiding a QR code, two image steganography techniques were developed based upon the spatial and the transform domains. In the spatial domain, three methods were proposed and implemented based on the least significant bit insertion technique and the use of pseudorandom number generator to scatter the message into a set of arbitrary pixels. These methods utilise the three colour channels in the images based on the RGB model based in order to embed one, two or three bits per the eight bit channel which results in three different hiding capacities. The second technique is an adaptive approach in transforming domain where a threshold value is calculated under a predefined location for embedding in order to identify the embedding strength of the embedding technique. The quality of the generated stego images was evaluated using both objective (PSNR) and Subjective (DSCQS) methods to ensure the reliability of our proposed methods. The experimental results revealed that PSNR is not a strong indicator of the perceived stego image quality, but not a bad interpreter also of the actual quality of stego images. Since the visual difference between the cover and the stego image must be absolutely imperceptible to the human visual system, it was logically convenient to ask human observers with different qualifications and experience in the field of image processing to evaluate the perceived quality of the cover and the stego image. Thus, the subjective responses were analysed using statistical measurements to describe the distribution of the scores given by the assessors. Thus, the proposed scheme presents an alternative approach to protect digital documents rather than the traditional techniques of digital signature and watermarking

    Smart techniques and tools to detect Steganography - a viable practice to Security Office Department

    Get PDF
    Dissertation presented as the partial requirement for obtaining a Master's degree in Information Management, specialization in Information Systems and Technologies ManagementInternet is today a commodity and a way for being connect to the world. It is through Internet is where most of the information is shared and where people run their businesses. However, there are some people that make a malicious use of it. Cyberattacks have been increasing all over the recent years, targeting people and organizations, looking to perform illegal actions. Cyber criminals are always looking for new ways to deliver malware to victims to launch an attack. Millions of users share images and photos on their social networks and generally users find them safe to use. Contrary to what most people think, images can contain a malicious payload and perform harmful actions. Steganography is the technique of hiding data, which, combined with media files, can be used to place malicious code. This problem, leveraged by the continuous media file sharing through massive use of digital platforms, may become a worldwide threat in malicious content sharing. Like phishing, people and organizations must be trained to suspect about inappropriate content and implement the proper set of actions to reduce probability of infections when accessing files supposed to be inoffensive. The aim of this study will try to help people and organizations by trying to set a toolbox where it can be possible to get some tools and techniques to assist in dealing with this kind of situations. A theoretical overview will be performed over other concepts such as Steganalysis, touching also Deep Learning and in Machine Learning to assess which is the range of its applicability in find solutions in detection and facing these situations. In addition, understanding the current main technologies, architectures and users’ hurdles will play an important role in designing and developing the proposed toolbox artifact

    Steganalysis of video sequences using collusion sensitivity

    Get PDF
    In this thesis we present an effective steganalysis technique for digital video sequences based on the collusion attack. Steganalysis is the process of detecting with a high probability the presence of covert data in multimedia. Existing algorithms for steganalysis target detecting covert information in still images. When applied directly to video sequences these approaches are suboptimal. In this thesis we present methods that overcome this limitation by using redundant information present in the temporal domain to detect covert messages in the form of Gaussian watermarks. In particular we target the spread spectrum steganography method because of its widespread use. Our gains are achieved by exploiting the collusion attack that has recently been studied in the field of digital video watermarking and more sophisticated pattern recognition tools. Through analysis and simulations we, evaluate the effectiveness of the video steganalysis method based on averaging based collusion scheme. Other forms of collusion attack in the form of weighted linear collusion and block-based collusion schemes have been proposed to improve the detection performance. The proposed steganalsyis methods were successful in detecting hidden watermarks bearing low SNR with high accuracy. The simulation results also show the improved performance of the proposed temporal based methods over the spatial methods. We conclude that the essence of future video steganalysis techniques lies in the exploitation of the temporal redundancy
    corecore