1,139 research outputs found

    Polygon Exploration with Time-Discrete Vision

    Full text link
    With the advent of autonomous robots with two- and three-dimensional scanning capabilities, classical visibility-based exploration methods from computational geometry have gained in practical importance. However, real-life laser scanning of useful accuracy does not allow the robot to scan continuously while in motion; instead, it has to stop each time it surveys its environment. This requirement was studied by Fekete, Klein and Nuechter for the subproblem of looking around a corner, but until now has not been considered in an online setting for whole polygonal regions. We give the first algorithmic results for this important algorithmic problem that combines stationary art gallery-type aspects with watchman-type issues in an online scenario: We demonstrate that even for orthoconvex polygons, a competitive strategy can be achieved only for limited aspect ratio A (the ratio of the maximum and minimum edge length of the polygon), i.e., for a given lower bound on the size of an edge; we give a matching upper bound by providing an O(log A)-competitive strategy for simple rectilinear polygons, using the assumption that each edge of the polygon has to be fully visible from some scan point.Comment: 28 pages, 17 figures, 2 photographs, 3 tables, Latex. Updated some details (title, figures and text) for final journal revision, including explicit assumption of full edge visibilit

    Diophantine approximations for translation surfaces and planar resonant sets

    Full text link
    We consider Teichm\"uller geodesics in strata of translation surfaces. We prove lower and upper bounds for the Hausdorff dimension of the set of parameters generating a geodesic bounded in some compact part of the stratum. Then we compute the dimension of those parameters generating geodesics that make excursions to infinity at a prescribed rate. Finally we compute the dimension of the set of directions in a rational billiard having fast recurrence, which corresponds to a dynamical version of a classical result of Jarn\'ik and Besicovich. Our main tool are planar resonant sets arising from a given translation surface, that is the countable set of directions of its saddle connections or of its closed geodesics, filtered according to length. In an abstract setting, and assuming specific metric properties on a general planar resonant set, we prove a dichotomy for the Hausdorff measure of the set of directions which are well approximable by directions in the resonant set, and we give an estimate on the dimension of the set of badly approximable directions. Then we prove that the resonant sets arising from a translation surface satisfy the required metric properties.Comment: Added appendix B, which provides a proof for a statement in Remark 1.10 of the previous version. Minor changes in the rest of the paper. 53 page

    A (7/2)-Approximation Algorithm for Guarding Orthogonal Art Galleries with Sliding Cameras

    Full text link
    Consider a sliding camera that travels back and forth along an orthogonal line segment ss inside an orthogonal polygon PP with nn vertices. The camera can see a point pp inside PP if and only if there exists a line segment containing pp that crosses ss at a right angle and is completely contained in PP. In the minimum sliding cameras (MSC) problem, the objective is to guard PP with the minimum number of sliding cameras. In this paper, we give an O(n5/2)O(n^{5/2})-time (7/2)(7/2)-approximation algorithm to the MSC problem on any simple orthogonal polygon with nn vertices, answering a question posed by Katz and Morgenstern (2011). To the best of our knowledge, this is the first constant-factor approximation algorithm for this problem.Comment: 11 page
    • …
    corecore