13,421 research outputs found

    Covering Radius of Two-dimensional Lattices

    Get PDF
    The covering radius problem in any dimension is not known to be solvable in nondeterministic polynomial time, but when in dimension two, we give a deterministic polynomial time algorithm by computing a reduced basis using Gauss\u27 algorithm in this paper

    Computational Approaches to Lattice Packing and Covering Problems

    Full text link
    We describe algorithms which address two classical problems in lattice geometry: the lattice covering and the simultaneous lattice packing-covering problem. Theoretically our algorithms solve the two problems in any fixed dimension d in the sense that they approximate optimal covering lattices and optimal packing-covering lattices within any desired accuracy. Both algorithms involve semidefinite programming and are based on Voronoi's reduction theory for positive definite quadratic forms, which describes all possible Delone triangulations of Z^d. In practice, our implementations reproduce known results in dimensions d <= 5 and in particular solve the two problems in these dimensions. For d = 6 our computations produce new best known covering as well as packing-covering lattices, which are closely related to the lattice (E6)*. For d = 7, 8 our approach leads to new best known covering lattices. Although we use numerical methods, we made some effort to transform numerical evidences into rigorous proofs. We provide rigorous error bounds and prove that some of the new lattices are locally optimal.Comment: (v3) 40 pages, 5 figures, 6 tables, some corrections, accepted in Discrete and Computational Geometry, see also http://fma2.math.uni-magdeburg.de/~latgeo

    Sphere Packing with Limited Overlap

    Full text link
    The classical sphere packing problem asks for the best (infinite) arrangement of non-overlapping unit balls which cover as much space as possible. We define a generalized version of the problem, where we allow each ball a limited amount of overlap with other balls. We study two natural choices of overlap measures and obtain the optimal lattice packings in a parameterized family of lattices which contains the FCC, BCC, and integer lattice.Comment: 12 pages, 3 figures, submitted to SOCG 201

    Template-based searches for gravitational waves: efficient lattice covering of flat parameter spaces

    Full text link
    The construction of optimal template banks for matched-filtering searches is an example of the sphere covering problem. For parameter spaces with constant-coefficient metrics a (near-) optimal template bank is achieved by the A_n* lattice, which is the best lattice-covering in dimensions n <= 5, and is close to the best covering known for dimensions n <= 16. Generally this provides a substantially more efficient covering than the simpler hyper-cubic lattice. We present an algorithm for generating lattice template banks for constant-coefficient metrics and we illustrate its implementation by generating A_n* template banks in n=2,3,4 dimensions.Comment: 10 pages, submitted to CQG for proceedings of GWDAW1
    corecore