5,498 research outputs found

    On identifying codes that are robust against edge changes

    Get PDF
    AbstractAssume that G=(V, E) is an undirected graph, and C⊆V. For every v∈V, denote Ir(G; v)={u∈C: d(u,v)≤r}, where d(u,v) denotes the number of edges on any shortest path from u to v in G. If all the sets Ir(G; v) for v∈V are pairwise different, and none of them is the empty set, the code C is called r-identifying. The motivation for identifying codes comes, for instance, from finding faulty processors in multiprocessor systems or from location detection in emergency sensor networks. The underlying architecture is modelled by a graph. We study various types of identifying codes that are robust against six natural changes in the graph; known or unknown edge deletions, additions or both. Our focus is on the radius r=1. We show that in the infinite square grid the optimal density of a 1-identifying code that is robust against one unknown edge deletion is 1/2 and the optimal density of a 1-identifying code that is robust against one unknown edge addition equals 3/4 in the infinite hexagonal mesh. Moreover, although it is shown that all six problems are in general different, we prove that in the binary hypercube there are cases where five of the six problems coincide

    Constructions and Noise Threshold of Hyperbolic Surface Codes

    Full text link
    We show how to obtain concrete constructions of homological quantum codes based on tilings of 2D surfaces with constant negative curvature (hyperbolic surfaces). This construction results in two-dimensional quantum codes whose tradeoff of encoding rate versus protection is more favorable than for the surface code. These surface codes would require variable length connections between qubits, as determined by the hyperbolic geometry. We provide numerical estimates of the value of the noise threshold and logical error probability of these codes against independent X or Z noise, assuming noise-free error correction

    On the sphere-decoding algorithm I. Expected complexity

    Get PDF
    The problem of finding the least-squares solution to a system of linear equations where the unknown vector is comprised of integers, but the matrix coefficient and given vector are comprised of real numbers, arises in many applications: communications, cryptography, GPS, to name a few. The problem is equivalent to finding the closest lattice point to a given point and is known to be NP-hard. In communications applications, however, the given vector is not arbitrary but rather is an unknown lattice point that has been perturbed by an additive noise vector whose statistical properties are known. Therefore, in this paper, rather than dwell on the worst-case complexity of the integer least-squares problem, we study its expected complexity, averaged over the noise and over the lattice. For the "sphere decoding" algorithm of Fincke and Pohst, we find a closed-form expression for the expected complexity, both for the infinite and finite lattice. It is demonstrated in the second part of this paper that, for a wide range of signal-to-noise ratios (SNRs) and numbers of antennas, the expected complexity is polynomial, in fact, often roughly cubic. Since many communications systems operate at noise levels for which the expected complexity turns out to be polynomial, this suggests that maximum-likelihood decoding, which was hitherto thought to be computationally intractable, can, in fact, be implemented in real time - a result with many practical implications
    corecore