23,003 research outputs found

    Coverage Issues in Wireless Ad-Hoc Sensor Networks

    Get PDF
    Wireless Ad-Hoc sensor networks have a broad range of applications in the military,vigilance, environment monitoring, and healthcare fields. Coverage of the sensor networks describes how well an area is monitored. The coverage problem has been studied extensively, especially when combined with connectivity and well-organized. Coverage is a typical problem in the wireless sensor networks to fulfil issued sensing tasks. In general, sensing analysis represents how well an area is monitored by sensors. The quality of the sensor network can be reflected by levels of coverage and connectivity that it offers. The coverage issues have been studied extensively, especially when combined with connectivity and energy efficiency. Constructing a connected fully covered, and energy efficient sensor network is valuable for real world applications due to limited resources of sensor nodes. The survey recent contributions addressing energy efficient coverage problems in the context of static WASNs, networks in which sensor nodes do not move once they are deployed and present in some detail of the algorithms, assumptions, and results. A comprehensive comparison among these approaches is given from perspective of design objectives, assumptions, algorithm attributes and related results

    Coverage Protocols for Wireless Sensor Networks: Review and Future Directions

    Full text link
    The coverage problem in wireless sensor networks (WSNs) can be generally defined as a measure of how effectively a network field is monitored by its sensor nodes. This problem has attracted a lot of interest over the years and as a result, many coverage protocols were proposed. In this survey, we first propose a taxonomy for classifying coverage protocols in WSNs. Then, we classify the coverage protocols into three categories (i.e. coverage aware deployment protocols, sleep scheduling protocols for flat networks, and cluster-based sleep scheduling protocols) based on the network stage where the coverage is optimized. For each category, relevant protocols are thoroughly reviewed and classified based on the adopted coverage techniques. Finally, we discuss open issues (and recommend future directions to resolve them) associated with the design of realistic coverage protocols. Issues such as realistic sensing models, realistic energy consumption models, realistic connectivity models and sensor localization are covered

    Controlling the Coverage of Wireless Sensors Network Using Coverage in Block Algorithm

    Get PDF
    This research investigate the modeling of Blocks, Present in the sensing field and its impact in the computation of coverage path in wireless sensor networks (WSNs). The solutions of these problems are proposed using techniques from Approximation algorithm. In order to accomplish the designated task successfully, sensors need to actuate, compute and disseminate the acquired information amongst them. Intuitively, coverage denotes the quality of sensing of a sensor node. While a sensor senses. It needs to communicate with its neighboring sensor nodes in order to disseminate the acquired data. That is where connectivity comes in to place. In fact, coverage and connectivity together measure the quality of service (QoS) of a sensor network. Coverage and connectivity in wireless sensor networks are not unrelated problems. Therefore, the goal of an optimal sensor deployment strategy is to have a globally connected network, while optimizing coverage at the same time. By optimizing coverage, the deployment strategy would guarantee that optimum area in the sensing field is covered by sensor, as required by the underlying application, whereas by ensuring that the network is connected, it is ensured that the sensed information is transmitted to other nodes and possibly to a centralized base station (called sink) which makes valuable decision for the application. Many recent and ongoing research in sensor networks focus on optimizing coverage and connectivity by optimizing node placement strategy, minimizing number of nodes to guarantee required degree of coverage, maximizing network lifetime by minimizing energy usage, computing the most and least sensed path in the given region and so on. To solve these optimizing problems related to coverage, exiting research uses mostly probabilistic technique based on random graph theory, randomized algorithm, computational geometry, and so on. Of particular interest to us is the problem of computing the coverage in block (CIB), where give

    An Energy-Efficient Communication Scheme in Wireless Cable Sensor Networks

    Get PDF
    This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2011 proceedingsNowadays wireless sensor networks (WSNs) have attracted a great deal of study due to their low cost and widerange applications. Most of the sensors used so far are point sensors which have a disc-shaped sensing region. In this paper, we study a new type of sensor: the fiber optic cable sensor. Unlike a traditional point sensor, this type of sensor has a rectangular sensing region with a processor installed on it to do processing and communication. Like wireless sensor networks with point sensors, energy-efficient communication is still an important issue in wireless sensor networks with cable sensors because of the need to efficiently use limited resources. To address the issue, we propose a Cable Mode Transition (CMT) algorithm, which determines the minimal number of active sensors to maintain Kcoverage of a terrain as well as K-connectivity of the network. Specifically, it allocates periods of inactivity for cable sensors without affecting the coverage and connectivity requirements of the network based only on local information. Before presenting CMT, we first show the relationship between coverage and connectivity, then the eligibility algorithm permitting a cable sensor to decide whether to stay active. CMT calls the eligibility algorithm to schedule cables. Simulation results show that our scheme is efficient in saving energy and thus can prolong the lifetime of wireless cable sensor networks.supported by NSF grant CBET 0729696Approved for public release; distribution is unlimited

    ENERGY EFFICIENT SLEEP WAKEUP SCHEDULING METHOD FOR P-COVERAGE AND Q-CONNECTIVITY MODEL IN TARGET BASED WIRELESS SENSOR NETWORKS

    Get PDF
    Energy limitations are the problem that gets the most attention in the term of Wireless Sensor Networks (WSN). Sleep wakeup scheduling method is one of the most efficient techniques to increase sensor node operational time on WSN. However, in the target-based WSN environment with p-coverage and q-connectivity models, the use of wake-up scheduling has to consider the constraints on the number of connectivity on the sensor and coverage on the target. Genetic Algorithm is a solution to the problem of sleep-wake scheduling with multi-objective problems. This study proposes a new method of sleep wakeup scheduling based on Genetic Algorithm for energy efficiency in target-based WSN with p-coverage and q-connectivity models. This new method uses the sensor range, connectivity range and energy as an objective function of the fitness function in the Genetic Algorithm. With the presence of energy as a factor of the objective function can increase energy efficiency in target-based WSN with p-coverage and q-connectivity models
    • …
    corecore