85,710 research outputs found

    Course Allocation via Stable Matching

    Get PDF
    The allocation of students to courses is a wide-spread and repeated task in higher education, often accomplished by a simple first-come first-served (FCFS) procedure. FCFS is neither stable nor strategy-proof, however. The Nobel Prize in Economic Sciences was awarded to Al Roth and Lloyd Shapley for theirwork on the theory of stable allocations. This theory was influential in many areas, but found surprisingly little application in course allocation as of yet. In this paper, different approaches for course allocation with a focus on appropriate stablematchingmechanisms are surveyed. Two such mechanisms are discussed in more detail, the Gale- Shapley student optimal stable mechanism (SOSM) and the efficiency adjusted deferred acceptance mechanism (EADAM). EADAM can be seen as a fundamental recent contribution which recovers efficiency losses from SOSM at the expense of strategy-proofness. In addition to these two important mechanisms, a survey of recent extensions with respect to the assignment of schedules of courses rather than individual courses is provided. The survey of the theoretical literature is complemented with results of a field experiment, which help understand the benefits of stable matching mechanisms in course allocation applications

    Pairing games and markets

    Get PDF
    Pairing Games or Markets studied here are the non-two-sided NTU generalization of assignment games. We show that the Equilibrium Set is nonempty, that it is the set of stable allocations or the set of semistable allocations, and that it has has several notable structural properties. We also introduce the solution concept of pseudostable allocations and show that they are in the Demand Bargaining Set. We give a dynamic Market Procedure that reaches the Equilibrium Set in a bounded number of steps. We use elementary tools of graph theory and a representation theorem obtained here

    Course Bidding at Business Schools

    Get PDF
    Mechanisms that rely on course bidding are widely used at Business Schools in order to allocate seats at oversubscribed courses. Bids play two key roles under these mechanisms: Bids are used to infer student preferences and bids are used to determine who have bigger claims on course seats. We show that these two roles may easily conflict and preferences induced from bids may significantly differ from the true preferences. Therefore while these mechanisms are promoted as market mechanisms, they do not necessarily yield market outcomes. The two conflicting roles of bids is a potential source of efficiency loss part of which can be avoided simply by asking students to state their preferences in addition to bidding and thus "separating" the two roles of the bids. While there may be multiple market outcomes under this proposal, there is a market outcome which Pareto dominates any other market outcome.

    Filling position incentives in matching markets

    Get PDF
    One of the main problems in the hospital-doctor matching is the maldistribution of doctor assignments across hospitals. Namely, many hospitals in rural areas are matched with far fewer doctors than what they need. The so called "Rural Hospital Theorem" (Roth (1984)) reveals that it is unavoidable under stable assignments. On the other hand, the counterpart of the problem in the school choice context|low enrollments at schools| has important consequences for schools as well. In the current study, we approach the problem from a different point of view and investigate whether hospitals can increase their filled positions by misreporting their preferences under well-known Boston, Top Trading Cycles, and stable rules. It turns out that while it is impossible under Boston and stable mechanisms, Top Trading Cycles rule is manipulable in that sense

    Computing Stable Coalitions: Approximation Algorithms for Reward Sharing

    Full text link
    Consider a setting where selfish agents are to be assigned to coalitions or projects from a fixed set P. Each project k is characterized by a valuation function; v_k(S) is the value generated by a set S of agents working on project k. We study the following classic problem in this setting: "how should the agents divide the value that they collectively create?". One traditional approach in cooperative game theory is to study core stability with the implicit assumption that there are infinite copies of one project, and agents can partition themselves into any number of coalitions. In contrast, we consider a model with a finite number of non-identical projects; this makes computing both high-welfare solutions and core payments highly non-trivial. The main contribution of this paper is a black-box mechanism that reduces the problem of computing a near-optimal core stable solution to the purely algorithmic problem of welfare maximization; we apply this to compute an approximately core stable solution that extracts one-fourth of the optimal social welfare for the class of subadditive valuations. We also show much stronger results for several popular sub-classes: anonymous, fractionally subadditive, and submodular valuations, as well as provide new approximation algorithms for welfare maximization with anonymous functions. Finally, we establish a connection between our setting and the well-studied simultaneous auctions with item bidding; we adapt our results to compute approximate pure Nash equilibria for these auctions.Comment: Under Revie

    A Field Experiment on Course Bidding at Business Schools

    Get PDF
    Allocation of course seats to students is a challenging task for registrars' offices in universities. Since demand exceeds supply for many courses, course allocation needs to be done equitably and efficiently. Many schools use bidding systems where student bids are used both to infer preferences over courses and to determine student priorities for courses. However, this dual role of bids can result in course allocations not being market outcomes and unnecessary efficiency loss, which can potentially be avoided with the use of an appropriate market mechanism. We report a field experiment done at the University of Michigan Business School in Spring 2004 comparing its typical course bidding mechanism with the alternate Gale-Shapley Pareto-dominant market mechanism. Our results suggest that using the latter could vastly improve efficiency of course allocation systems while facilitating market outcomes.
    corecore