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Abstract

Pairing Games or Markets that we study here are a generalization of the assignment game

where players are not a priori partitioned into two sides and utility realizations are NTU. We

identify a necessary and sufficient condition for the nonemptiness of the core, equivalently the

set of competitive equilibria. We define semistable and pseudostable allocations and show that

there exists a semistable and a pseudostable allocation when the core is empty. We also show

that pseudostable allocations belong to the Bargaining Set of a Pairing Game. Our approach

is constructive and utilizes solitary-minimal matchings that we introduce. We give a Market

Procedure that reaches the Equilibrium Set and show several properties that the Equilibrium

Set has.

Keywords : Stable Matching, Market Design, NTU Assignment Game, Roommate Prob-

lem, Coalition Formation, Bargaining Set, Bilateral Transaction, Gallai-Edmonds Decomposi-

tion

1 Introduction

Matching models in economics mostly have a two-sided structure, e.g., workers and firms, buyers

and sellers. In this paper we study pairing games or pairing markets where an arbitrary set of

players partition into pairs and singletons. Each pair of players has a continuum of activities to

jointly choose from if they form a pair - call it a partnership or a bilateral transaction. We are

interested in outcomes that are stable or in competitive equilibrium and in designing a procedure

to achieve them.
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Our model is a generalization of the assignment game (Shapley and Shubik (1972)) in two ways.

First, players are not a priori partitioned into two sides. Second, utility realizations permit income

effects and are not restricted to the transferable utility domain.

The assignment game has been very fruitful in modelling a wide range of economic situations,

e.g., markets for indivisible objects, marriage, fair allocations, principal-agent matching.1 An im-

portant property of the assignment game is the existence and coincidence of core and competitive

equilibrium allocations. Also, two sidedness has permitted the design of rather simple coordinated

market procedures2 for attaining desired outcomes, and the results carry over to more general cases.

For example, players’ preferences may belong to the general nontransferable utility domain3, players

on one side may have multiple partners if preferences satisfy gross substitutability4, and players on

both sides may have multiple partners if preferences are additive separable.5

Yet many markets are not two-sided : For example many mergers occur among firms that are

alike. Likewise, acquisitions and joint ventures.6 Various swap markets are example to the multiple

partners version of our model.7 So are organized markets for bilateral contracting in electricity

where some players are seller to one partner and buyer to another.8 It is only recently on the

other hand that Pairing Games and Markets are being explored. This is in contrast to the discrete

counterpart of our model, the roommate problem (Gale and Shapley (1962)), which has a fairly

substantial literature including the interesting application in market design for kidney exchange.9

One reason why non-two-sided models have not been much considered is the possible nonexis-

tence of core or competitive equilibrium allocations. It is well known that this possibility is not

uncommon. For example, in the three-player Game where two players may share a cake and none

of the cakes is sufficiently large in comparison to the other two cakes, the odd-man-out will be able

to lure away one of the partners in any pair that forms. So there is no core allocation, equivalently,

no competitive equilibrium in partnership prices. The three-player Game was taken up by Binmore

(1985) for a study of bargaining with pair formation. As Binmore demonstrated, actually, there

1As in Demange, Gale and Sotomayor (1986), Becker (1973), Alkan, Demange and Gale (1991), Dam and Perez-

Castrillo (2006) respectively.
2The multi-item auctions in Crawford and Knoer (1981), Demange, Gale and Sotomayor (1986), Perez-Castrillo

and Sotomayor (2002).
3Alkan (1989,1992,1997), Alkan and Gale (1990).
4Kelso and Crawford (1982), Gul and Stachetti (2000).
5Sotomayor (1992,2009).
6Gong et al (2007) report that most joint ventures especially those succesful are bilateral.
7Our main results in this paper would carry over to the multiple partners model under additive separability.
8As in the Free Contract Market ACL in Brazil.
9E.g., Irving (1985), Tan (1990,1991), Diamantoudi, Miyagawa and Xue (2004), Inarra, Larrea and Molis (2008),

Klaus, Klijn and Walzl (2011), and Roth, Sonmez and Unver (2005).
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are three particular outcomes in this Game that are “stable” under a broader consideration - more

precisely, a unique endogenous outside-option vector that “generates” these three outcomes.10 The

three-player Game is of course special and Binmore remarked that “the four-player game is less

easily dealt with” citing “combinatorial difficulties intrinsic to the problem.”

In this paper we offer a comprehensive analysis of all Pairing Games and Markets. We first

identify a condition that is necessary and sufficient for the emptiness of the core - the set of

allocations that are individually rational and stable under pairwise blocking. Core allocations are

equivalently competitive equilibria in partnership prices as in the assignment game. We address the

situations when the core is empty through two alternative extensions. We show that there exists,

for every Market/Game, an Equilibrium Set that coincides with the set of core and competitive

equilibrium allocations when they exist and generates two “extended solutions” when they do not

exist. We also show that the Equilibrium Set is reachable by a fairly simple coordinated market

procedure and that it has several nice properties. On the transferable utility domain, “constant”

players aside, it is nearly identical in structure to the two-sided Equilibrium Set of an assignment

game. On the nontransferable utility domain, it has a generalized convexity and median property

but is not necessarily two-sided.

One of the extensions involves allowing half-partnerships and we call an allocation semistable

if it is immune to blocking under this possibility. The other extension involves strengthening the

blocking condition as in the definition of a Bargaining Set11 for cooperative games and we call an

allocation pseudostable if it is immune to blocking in this sense. These two extensions pertain to

two different institutional environments; mathematically, semistable and pseudostable allocations

are closely related. To illustrate, in the three-player Game, the allocation where each player is

half-partner to the other two players and the cakes are shared “equally” is semistable. And each of

the three allocations where two players share the cake “equally” and the third player gets nothing

- the outcomes Binmore (1985) identified - is pseudostable.

Let us give a more detailed account : We look at aspirations12 and demand. The standard

definitions are as follows : An aspiration is a payoff vector that gives for each player the maximum-

utility she can achieve in some partnership. The payoffs in an aspiration are mutually determined

and can be seen as the prices the players ask for entering into partnership. The set of players with

any of whom a player can achieve her aspiration payoff is the demand set of that player. A player is

said to be active at an aspiration if her payoff is strictly above her stand alone utility, in other words,

10Binmore’s demonstration has additional aspects; in particular, he shows that each of the three allocations arises

as the unique subgame perfect equilibrium of a noncooperative sequential offer game.
11The definition allows for counterobjections to objections. See Aumann and Maschler (1964), Zhou (1994).
12Albers (1974), Bennett (1983).
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if she strictly supplies herself for partnership. A stable or competitive equilibrium allocation is an

aspiration where there is a demand compatible matching that leaves no active player unmatched.

We call such an aspiration realizable.

Aspirations are many and may be highly nonrealizable. Consider for example a Market where

initially a large number of players “aspire” for one particular player only. Such a situation would

not be uncommon. The aspiration payoff vector in this situation is highly nonrealizable since none

among the many suitors except possibly one will be able to achieve her aspiration payoff. Naturally

then many players will look for lowering their aspiration levels and including other potential partners

into their demand sets. It is evident that this is a complex process especially when players are not

two-sided. Quite likely, pairs will form in some sequential occurrence, with inefficiencies, before

aspirations are patiently awaited to settle down. Our quest in this paper is for an aspiration

where a maximum number of pairs may form simultaneously - compatible with demand - and

leave unmatched a minimum number of active players.13 In the three-player Game a third of the

population remains unmatched at any aspiration. As we show, this is a worst case among all games.

We show that, for any Pairing Market, there always exist aspirations - that we call settled -

at which it is possible to match all active players in a demand compatible way, provided half-

partnerships are viable, and otherwise, it is possible to match at least two thirds of all active

players. A special but relevant case is when players come in types. Then, it is possible to match all

the active players in any type with an even number of players and all but one of the active players

in any type with an odd number of players. So, in the worst case, the proportion of active players

who necessarily remain unmatched is small in large populations.14 The market procedure we give

describes how such outcomes may be reached in a coordinated way. Settled aspirations constitute

the Equilibrium Set we have mentioned.

To be more precise, our characterization result says : There is no stable allocation if and only

if there is a nonrealizable aspiration which has no bilateral submarket consisting of more “buyers”

than “sellers”. (We give the definition of a “submarket” in the next section but let us emphasize

that whether a player is a “buyer” or a “seller” or neither is with reference to an aspiration and may

change from one aspiration to another.) We call a bilateral submarket with more buyers than sellers

a seller-market and call an aspiration with no seller-market a settled aspiration. More concisely,

then, there is no stable allocation if and only if there is a settled aspiration that is nonrealizable.

This characterization gives a local condition for the nonexistence of stable allocations and a stopping

rule for our market procedure.

We show then that any settled aspiration that is nonrealizable - i.e., that is not a stable allocation

13Then a residual market may form among the unmatched.
14Chiappori, Galichon and Salanie (2012) show the same for the transferable utility case.
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- generates a semistable and a pseudostable allocation. The method is constructive : we construct

the semistable and pseudostable allocations by making use of certain maximum-cardinality match-

ings. These matchings we have named solitary-minimal. Solitary-minimal matchings stand behind

and unify most of our results. For instance we identify a seller-market by way of a solitary-minimal

matching. And our market procedure traces a path of aspirations noting a solitary-minimal match-

ing at each aspiration.

The organization of the paper is as follows : In the subsection below, we make additional remarks

about our work and the existing literature. In Section 2, we give formal definitions and introduce the

notion of a seller-market. In Section 3, we give our existence results along with a characterization

of seller-markets via solitary-minimal matchings. In Section 4, we show several properties of the

Equilibrium Set including the fact that there exists at each settled aspiration a minimum number of

unmatchable active players. In Section 5, we first show that settled aspirations generate maximum-

stable allocations15 and define pseudostable allocations via solitary-minimal matchings. We then

give a characterization of the Demand Bargaining Set16 in our context, show that it contains all

pseudostable allocations and point at the need for a coordinated procedure for achieving a settled-

aspiration-allocation. Section 6 spells out the Market Procedure in thorough detail. Section 7

contains concluding remarks. Proofs omitted are in the Appendix.

1.1 Additional Remarks and Current Literature

Let us say more about solitary-minimal matchings and our contribution from a mathematical point

of view. The mathematical apparatus we use is that of maximum-cardinality or maximal match-

ings in graphs and some of our results are closely related to the Gallai-Edmonds Decomposition

Theorem17 although we nowhere use it explicitly. This Theorem says that, in any demand graph,

players partition into three types - let us say, “independent”, “central”, “substitutable” - such that

(i) every maximal matching pairs an independent player with an independent player, a central

player with a substitutable player, and leaves unmatched only a subset of the substitutable players,

and that (ii) each unmatched player resides in an odd-cycle defined with respect to the matching.

An odd-cycle may consist of a single unmatched player. The solitary-minimal matchings are those

maximal matchings where the number of such solitary players is minimum.18 We do not know

whether solitary-minimal matchings have been defined or utilized elsewhere.

15As in the definition given by Tan (1991) for the roommate problem.
16Introduced for TU games by Morelli and Montero (2003) who show that it is a subset of the Zhou Bargaining

Set (Zhou (1994)). We show that this is also true in our context.
17Edmonds (1965), Gallai (1963,1964).
18More precisely, in our case, where the number of active unmatched singleton players is minimum.
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The Gallai-Edmonds Theorem pertains to a single graph.19 Our work involves viewing demand

graphs continuously in the neighborhood of an aspiration. The demand graph changes at a finite

number of aspirations on any path of aspirations. Our Market Procedure traces a path of aspirations

over which certain properties of the Gallai-Edmonds decompositions are lexicographically monotone.

This involves identifying a unique Seller-Market at each aspiration and keeping track of it on the

traced path. We spell out in Section 6.1 how this can be done recursively by a judicious selection

of successive solitary-minimal matchings.

The existing literature on Pairing Games and Markets is on the transferable utility domain.

There are several characterizations given for the existence of stable allocations and some procedures

for finding them when they exist : Eriksson and Karlander (2001) give a characterization for stable

allocations at a given matching, that is similar to the characterization for roommate problems by

Tan (1991), and then use linear programming duality for optimal matchings. Talman and Yang

(2011) also give a characterization that uses linear programming duality. Sotomayor (2005) gives a

characterization that makes use of “simple outcomes” and is of a nonconstructive nature. Chiappori,

Galichon and Salanie (2012), as already mentioned, consider populations with types. More recently,

Biro et al (2012) describe an algorithm for finding a stable allocation that is based on satisfying

blocking pairs at unstable allocations, and Andersson et al (2013) give a market procedure for

finding a stable allocation that is based on constructing allocations with equal division and using

overdemanded sets.

Our analysis and our results nowhere involve or require interpersonal comparison of utility.

We handle the NTU aspect essentially through the Direction Lemma in Section 3 which we have

adapted from our earlier work on the NTU assignment game.20 For this reason, in a sense, the

additional complexity we incur in covering the NTU domain has essentially a “one-shot” cost that

is associated with how the Direction Lemma works. There are though several aspects that require

particular attention on the NTU domain and significant differences between the two models. The

Equilibrium Set, for example, has special properties on the TU domain that do not hold on the

NTU domain. Still a substantial part of our work would nearly be the same if restricted to the TU

domain - for example, our characterization of the Seller-Market and identifying it on the Procedure

path or our Bargaining Set analysis.

In comparison to the existing literature, our work (i) covers the NTU domain, (ii) gives a char-

acterization for the existence of stable allocations via seller-markets and aspirations, (iii) explores

19Utilized as such by Roth, Sonmez and Unver (2005) and Yilmaz (2011).
20Where it has sometimes been referred to as the Perturbation Lemma : Alkan (1989, 1992, 1997), Alkan, Demange

and Gale (1991), Alkan and Gale (1990). There are few other papers on the NTU assignment game : Moldovanu

(1990), Kucuksenel (2011).
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in detail what may happen when stable allocations do not exist and describes two independent

extended solutions, (iv) shows several properties of the Equilibrium Set and (v) gives a Market

Procedure fully spelled out. The analysis we offer is entirely self-contained and utilizes a character-

ization of Seller-Markets via solitary-minimal matchings.

2 Model and Basic Definitons

A Pairing Game is a triplet (N, r, f) where N is a finite set of players, the vector r = (ri) gives the

stand alone utilities of players, and the array f = (fij) consists of partnership functions for pairs of

players : fij(uj) is the utility ui which i achieves as partner of j when j achieves the utility uj. In

particular

fij = f−1ji .

We assume fij are continuous decreasing functions and fij(rj) <∞.

uj

ui

uk

fij

fjk

fki

Figure 1: Partnership Functions

A matching is a set of pairs where each player is in at most one pair. A player who does not

belong to any pair in a matching µ is unmatched at µ. A payoff is a vector u ∈ RN that assigns a

utility to each player. We say that a payoff u is realizable if there is a matching µ where

ui = fij(uj) for ij ∈ µ

and ui = ri for i unmatched at µ. An allocation is a pair (u, µ) where u is a payoff realizable by the

matching µ. We will mostly suppress the particular matching µ at an allocation (u, µ) and refer to

the “realizable payoff” u as an allocation.
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An allocation u is individually rational if u ≥ r. A pair ij is a blocking pair at an allocation u if

there exists (u′i, u
′
j) > (ui, uj) satisfying u′i = fij(u

′
j). An allocation u is a stable (or core) allocation

if it is individually rational and there is no blocking pair at u.

The triplet (N, r, f) is at the same time a Pairing Market : An allocation u is a competitive

equilibrium allocation if it is individually rational and ui ≥ fij(uj) for every j. We show below that a

stable allocation is equivalently a competitive equilibrium allocation. The notion of an ”aspiration”

is essential :

An aspiration is a payoff u where

ui = max {ri,max fij(uj)} for all i.

Thus, an aspiration is a vector that assigns to each player the maximum-utility (or price) she can

achieve, through some partnership or by standing alone, given all the other maximum-utilities (or

prices.) One can construct an aspiration in |N | simple steps : Order the players in any way and let

Nk be the top k players in that order. Let u1 be the stand alone utility r1 of the first player and

step by step let uk = max {rk,maxj∈N−Nk
fij(uj)} for the remaining players.

By definition an aspiration that is realizable is a competitive equilibrium allocation. And, a

competitive equilibrium allocation u is a stable allocation - since otherwise (u′i, u
′
j) > (ui, uj) for

some u′i = fij(u
′
j) but then ui < u′i = fij(u

′
j) < fij(uj). Also, a stable allocation is an aspiration

(otherwise there is a blocking pair) that is realizable. Thus, a stable allocation, a competitive

equilibrium allocation and a realizable aspiration are mutually equivalent.

We let r = 0 with no loss of generality and regard (N, f) as describing a Pairing Game and a

Pairing Market fixed in the rest of the paper.

2.1 An Extension : Half-Partnerships

Stable or competitive equilibrium allocations do not always exist. Here we give an extension of our

model where, as we will show, they exist and are equivalent.

The extension is in the notion of realizability : We allow a player to have at most two half-

partners as an alternative to one full-partner, understanding that half-partnership is reciprocal,

namely, a player i is half-partner to j if and only if j is half-partner to i. We will assume that a

pair of players i, j can achieve the “half-partnership utilities” (vij, vji) = (hij(vji), hji(vii)) through

the “half-partnership functions” hij that satisfy

hij(z) = fij(2z)/2 for all z

(constant-returns-to-scale) and that the utility of a player with two half-partners is the sum of her

half-partnership utilities (separability.) Under these assumptions, the definition of an aspiration
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carries over “unchanged”: a player i “aspires” to have player j as a half-partner (under the ex-

pectation that she will have a second half-partner) or as a full-partner if and only if fij(uj) ≥ 0

and

fij(uj) ≥ fij′(uj′) for all j′.

We note that there will exist a “full-partnership” blocking pair at any allocation which is not an

aspiration. In particular, any allocation u where there is a player i with only one half-partner (and

ui > 0) is not an aspiration (since 2ui > ui) therefore will be blocked by some pair ij. Therefore,

a player who has only one half-partner at a “stable” allocation can only be a nonactive player.

We will show that if there is no stable allocation then there is a “stable” allocation where every

player has one full-partner, two half-partners or no partner. For simplicity we will just assume that

allocations do not admit single half-partnerships.

Formally, a half-matching χ is a nonempty set of pairs where every player in χ belongs to two

pairs, in other words, has two distinct half-partners. A payoff u is an allocation if it is realizable

under half-partnership, that is to say, if there is a matching ν and a half-matching χ that have no

player in common and an array (vij) of half-partnership utilities, such that

ui = fij(uj) for ij ∈ µ,

ui = hij(vji) + hij′(vj′i) for ij, ij′ ∈ χ,

and ui = 0 for i unmatched at (ν, χ). We call an allocation (u, ν, χ) semistable if there is no blocking

pair at u. It is easily seen that a semistable allocation u is equivalently a realizable aspiration, i.e.,

a competitive equilibrium allocation. In particular, a player i in half-partnership with j, j′ at a

semistable allocation is indifferent between half-partnership and having either half-partner as full-

partner, i.e.,

ui = hij(vji) + hij′(vj′i) = fij(uj) = fij′(uj′).

A player in half-partnership belongs to a unique “cycle” of players where each player is half-partner

to her two neighbors in the cycle.

The notion of a half-matching was introduced by Pulleyblank (1973) and Tan (1990) in the

context of the roommate problem. Half-matchings and fractional matchings have recently been more

closely incorporated into economic modelling and design. Half-time and part-time relationships are

a natural example as Biro and Fleiner (2012) and Manjunath (2011) discuss in more detail.

2.2 Active-Minimal Matchings

Let u be an aspiration. We say that players i and j demand each other at u if

ui = fij(uj).
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The set of all pairs ij who demand each other at u, D(u), is the demand graph at u. We say that

a matching

µ ⊂ D(u)

is a matching at u. For any S ⊂ N, we denote DS(u) = {ij ∈ D(u)|i ∈ S} . We call Di(u) =

{j|ij ∈ D(u)} the demand set of i. DS(u) is the union of the demand sets of S-players. A player i

is active at u if

ui > 0.

Let µ be a matching at u. We say that a player i is active-unmatched at [u, µ]21 if i is active at

u and unmatched at µ. We denote Aµ the set of active-unmatched players at [u, µ] and define

α(u) = min
µ
|Aµ| .

We say µ is active-minimal at u if |Aµ| = α(u). That is, a matching at u is active-minimal if

it leaves a minimum number of active players unmatched, equivalently, if it matches a maximum

number of active players.22

We note that an aspiration u is realizable - i.e., u is an allocation, hence a stable allocation - if

and only if active players are matchable, i.e.,

α(u) = 0.

We will say that an aspiration u is nonrealizable if α(u) > 0. Our approach is based on identifying

“seller-markets” at nonrealizable aspirations which we introduce in the next subsection.

2.3 Submarkets

For any matching µ and player set S ⊂ N , we denote the set of all µ-partners of S-players

µ(S) = {j|ij ∈ µ, i ∈ S}

and say that µ matches S (into T and to T , respectively) if

|µ(S)| = |S|

(and µ(S) ⊂ T and µ(S) = T , respectively.) We say S is matchable (into T and to T , respectively)

if there is a matching µ that matches S (into T and to T , respectively.)

21Notice the use of “brackets” : [u, µ] may or may not be an allocation (u, µ). When there is no possibility of

confusion, we will say “at µ” instead of “at [u, µ]”.
22A matching at u is maximal if it contains a maximum number of pairs. An active-minimal matching is maximal

unless it can be augmented to a matching that contains two additional nonactive players. There is always a maximal

matching which is active-minimal.
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Definition 1 A pair of player sets (B, S) is a submarket at u if (i) B consists of active players,

(ii) the demand set of every B-player is in S, and (iii) S is matchable into B.

We make frequent use of the definitions in the paragraph below which are quite standard :

Let µ be a matching at an aspiration u and i be an active-unmatched player. We say j is

µ-reachable from i if there is a sequence of distinct players

i0, i1, ..., in−1, j1, ..., jn

where i0 = i, jn = j, ik−1jk ∈ D(u), and

ikjk ∈ µ,

for every k ≤ n− 1. Let i0, i1, ..., in−1, j1, ..., jn be such a sequence from i = i0. If jn is unmatched,

then µ can be augmented to the matching that contains the pairs ik−1jk (instead of the pairs ikjk)

and matches at least one more active player. If jn is matched with a nonactive player, then the

matching µ can be alternated to the matching that contains the pairs ik−1jk (instead of the pairs

ikjk and jnµ(jn)) and matches one more active player.23

Let µ be an active-minimal matching at an aspiration u and i be an active-unmatched player.

We refer to the sequence i0, i1, ..., in, j1, ..., jn (where i0 = i, jn = j, ik−1jk ∈ D(u), ikjk ∈ µ) as a

µ-sequence from i0; we say it is cycle-free if there is no player im such that

imin ∈ D(u),

and call it cyclic or a µ−cycle if

i0in ∈ D(u).

i0 i1 i2

j1 j2

(a) cycle-free

i0 i1 i2

j1 j2

(b) cyclic

i0 i1 i2

j1 j2

(c) not cycle-free

Figure 2: µ-sequences

23A characterization statement for active-minimal matchings, similar to the characterization for maximal matchings

by Berge (1957), would say : A matching µ is active-minimal if and only if every µ-reachable player from an active-

unmatched player is matched with an active player.
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The pair of player sets (I, J) where J is the set of all µ-reachable players from i and I = i∪µ(J)

is clearly a submarket at u. This is because (i) if I contained any nonactive player then µ could

be alternated to match an additional active player, and by “reachability” (ii) the demand sets of

I-players are in J , (iii) µ(J) ⊂ I. We refer to the submarket (I, J) as the µ-market from i or as

the µi-market at u.

We call a submarket (B, S) at u bipartite if B∩S is empty, that is, if the players B∪S partition

into buyers and sellers. (Note that a bipartite submarket is not exactly a “two-sided buyers-sellers”

market because a seller may demand a seller.) Bipartite submarkets and bipartite µ-markets play

a central role in our work.

Example 1 Suppose there are three players i0, i1, j1 all active at an aspiration u where i0, j1 and

i1, j1 demand each other but i0, i1 do not. Consider the matching µ = {i1j1}. The µ-sequence

i0, i1, j1 reaches j1 from i0. In fact the µi0-market is (I, J) = ({i0, i1} , {j1}) which is bipartite. Now

suppose i0, i1 demand each other as well at u. In this case, the µi0-market is ({i0, i1, j1} , {i1, j1})
and not bipartite (and there exists no stable allocation.)

We will make use of the following straightforward fact.

Proposition 1 A µi-market is bipartite if and only if every µ-sequence from i is cycle-free.

It will also be useful to note the following fact.

Lemma 1 If (B, S) is a bipartite submarket at u and µ is an active-minimal matching, then µ

leaves no S-player unmatched.

Proof. Otherwise µ is not active-minimal : By definition, there is a matching ν that matches S

into B. The matching µ′ that agrees with ν for S-players and with µ for other players matches

more active players than µ does.

Definition 2 We call |B| − |S| the excess in (B, S). A seller-market at u is a bipartite submarket

with positive excess.24 A balanced-market at u is a bipartite submarket with zero excess.

If there is a seller-market at u, we say that u has a seller-market or that u is an aspiration with

a seller-market.

It is clear that if u has a seller-market then it is not a stable allocation. As we will show, on the

other hand, a seller-market at u points the way to an aspiration with no seller-market.

We will show that a µ-market is bipartite hence a seller-market, provided µ is “solitary-minimal”,

a property for active-minimal matchings that we introduce in the next section.

24This definition is closely related to the definition of an overdemanded set in Demange, Gale and Sotomayor

(1986).
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3 Existence of Settled Aspirations : Stable and Semistable

Allocations

Here we introduce “settled aspirations” and prove their existence. We then give a characterization

for the existence of stable allocations and show that if there is no stable allocation then there is

always a semistable allocation. In between, we introduce the notion of a solitary-minimal matching

and characterize “the Seller-Market” at an aspiration by a solitary-minimal matching. We also

show that stable allocations always exist when there are an even number of players in each type.

What a stable allocation and a semistable allocation have in common is having no seller-market.

We call an aspiration settled if it has no seller-market.

3.1 Settled Aspirations

Theorem 1 There exists a settled aspiration.

The proof uses the key result below.

We call a nonzero vector d ∈ RN a feasible direction at u if u + λd is an aspiration for all

sufficiently small λ > 0. We say (N, f) is piecewise linear if all the partnership functions fij are

piecewise linear.

Lemma 2 ( Direction Lemma) Let (N, f) be piecewise linear. If (B, S) is a bipartite submarket at

an aspiration u, then there is a feasible direction d with

di < 0 for i ∈ B,

di > 0 for i ∈ S,

di = 0 for i ∈ N −B ∪ S

such that (B, S) is a bipartite submarket at u+ λd for all sufficiently small λ > 0.

Proof. (Theorem 1) Suppose (N, f) is piecewise linear. For any aspiration u and any seller-market

(B, S) at u, let gS(u) be the sum of ui for i ∈ S, and let g(u) be the maximum of gS(u) over all

seller-markets at u. Since the set of aspirations is nonempty and closed, there is an aspiration u∗

such that g(u∗) is maximum among all aspirations. Then u∗ has no seller-market, for otherwise by

the Direction Lemma, there is an aspiration u′ with g(u′) > g(u∗) contradicting maximality of u∗.

So there exists a settled aspiration for every piecewise linear (N, f) and by uniform approximation

for (N, f).

13



We define, for any two aspirations u, u′, the following two disjoint sets

N+
uu′ = {i|ui > u′i},

N−uu′ = {i|ui < u′i}.

Note

N+
u′u = N−uu′ .

The demand set of any N+
uu′-player is in N−uu′ :

Lemma 3 DN+
uu′

(u) ⊂ N−uu′.

Proof. If i demands j at u and u′ is an aspiration with u′i < ui, then u′j ≥ fji(u
′
i) > fji(ui) = uj.

Lemma 4 Let u be a settled aspiration and u′ be any aspiration. Then N+
uu′ is matchable into N−uu′

at u.

Proof. Every player in N+
uu′ is active (otherwise u′i < 0 for some i ∈ N+

uu′ hence u′ is not an

aspiration.) Suppose N+
uu′ is not matchable into N−uu′ at u. Let µ be a matching at u that matches a

maximum number of players in N+
uu′ and let i be a player unmatched. Let (B, S) be the µi-market

at u. By Lemma 3 and maximality of µ, using induction, S ⊂ N−uu′ and µ(S) ⊂ N+
uu′ . But then

(B, S) is a seller-market at u. Contradiction.

We now have the following result as analog of the “Decomposition Lemma” in the two-sided

market literature.

Proposition 2 Let u, u′ be any two settled aspirations. Then (N+
uu′ , N

−
uu′) is a balanced-market at

u.

Proof. By Lemma 4, N+
uu′ is matchable into N−uu′ at u and symmetrically N+

u′u is matchable into

N−u′u at u′. Then, (N+
uu′ , N

−
uu′) and (N+

u′u, N
−
u′u) are bipartite submarkets at u and u′ respectively, so∣∣N+

uu′

∣∣ =
∣∣N−uu′∣∣, therefore they are balanced-markets.

Proposition 3 Let u, u′ be any two settled aspirations. Then u is a stable allocation if and only if

u′ is a stable allocation.

Proof. Suppose (u, µ) is a stable allocation. Then µ matches N+
uu′ and N−uu′ to each other (otherwise

µ leaves a player i in N+
uu′ unmatched, which is not possible, because i is active). So

µ(N0
uu′) ⊂ N0

uu′ ,
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where N0
uu′ = N − (N+

uu′ ∪ N
−
uu′). Let µ0 be the set of all pairs ij ∈ µ with i, j ∈ N0

uu′ . By

Proposition 2, there is a matching ν at u′ that matches N+
uu′ and N−uu′ to each other. The matching

that agrees with µ0 for N0
uu′-players and with ν otherwise is u′-compatible and leaves no active

player unmatched. So u′ is a stable alloaction.

A settled aspiration may be nonrealizable as in Example 1. The statement below gives a char-

acterization for the existence of stable allocations; the “if” part is a restatement of Theorem 1 and

the “only if” part follows from Proposition 3.

Theorem 2 There is a stable allocation if and only if there is no nonrealizable settled aspiration.

This characterization to be sure is not based on the primitives in our model. Still it identifies

a local occurrence that is conclusive regarding the existence of a stable allocation. It provides the

stopping rule in our Market Procedure (Section 6.)

In Section 3.3, we show by construction that a nonrealizable settled aspiration is a semistable

allocation. The construction utilizes “solitary-minimal” matchings that we introduce in the subsec-

tion below.

3.2 Solitary-Minimal Matchings and the Seller-Market

The definitions and results we give here play a fundamental role throughout our paper.

Let u be an aspiration. Let µ be an active-minimal matching at u. Consider the set of active-

unmatched players Aµ at µ.

We call a player i ∈ Aµ nonsolitary or solitary at µ depending on whether there is a µi-cycle or

no µi-cycle at u. We denote Aµs the set of all solitary players at µ and define

σ(u) = min {|Aµs | |µ is active-minimal at u} .

We say µ is solitary-minimal at u if |Aµs | = σ(u). Thus a solitary-minimal matching is an active-

minimal matching at which the number of solitary players is minimum. We will call Aµs the solitary

set at µ.

We will show that there is a seller-market at u if and only if there is a solitary player at some

solitary-minimal matching at u, i.e., σ(u) > 0. Equivalently,

Theorem 3 An aspiration u is settled if and only if σ(u) = 0.

Theorem 3 follows from Theorem 4 which we state and prove below.

We call a seller-market (B, S) unitary if it has unit excess (|B| − |S| = 1) and S is matchable

to B − i for every i ∈ B.
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2 4

(a) not solitary-minimal

1 3 5

2 4

(b) solitary-minimal

Figure 3: Active-Minimal Matchings

Proposition 4 Let µ be a solitary-minimal matching at u. A µ-market from a solitary player is a

unitary seller-market at u.

It is clear that if a µ-market from a solitary player is bipartite then it is unitary. The proof

of Proposition 4 essentially amounts to showing bipartiteness and is obtained by putting together

the fact that solitary-minimal µ-sequences from solitary players are cycle-free (shown in the proof

below), Proposition 1 and the following observation.

Lemma 5 Let µ, µ′ be any two active-minimal matchings at u. A player who is nonsolitary (soli-

tary) at µ is either matched or nonsolitary (solitary) at µ′.

Proof. (Proposition 4) Let µ be a solitary-minimal matching at u and i a solitary player at µ.

Suppose the Proposition is false. Then the µi-market is not bipartite. So by Proposition 1 there is

a µ-sequence i0, i1, ..., in, j1, ..., jn from i0 = i and

imin ∈ D(u)

for some player im 6= i0. Alternate µ to µ′ which matches i0 but not in. Now in is nonsolitary at µ′

because the µ′-sequence i′0, i
′
1, ..., i

′
n−m, j

′
1, ..., j

′
n−m from i′0 = in where i′n−m = im is cyclic. Note that,

except for i0 and in, the players who are unmatched at µ and µ′ are identical, hence by Lemma 5,

the players who are solitary at µ and µ′ are identical except i. Thus, µ′ has one less solitary player

than µ, contradicting the fact that µ is solitary-minimal.

We now prepare for Theorem 4 below which is our main result in this subsection.

Let µ be any solitary-minimal matching at u. Let (Bµ, Sµ) be the union of all µ-markets from

Aµs -players. We refer to a µ-market from an Aµs -player as a solitary-player-market. Thus (Bµ, Sµ)

is the union of all solitary-player-markets at µ. It is straightforward to see that Sµ is the set of

all µ-reachable players from the solitary set Aµs and Bµ = Aµs ∪ µ(Sµ). In particular, (Bµ, Sµ) is a

seller-market.
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Now let (B∗, S∗) be the union of all unitary seller-markets at u. It is easily seen that (B∗, S∗)

is a seller-market. (It is in general not true that the union of two seller-markets is a seller-market

: Consider, for example, an aspiration u where D(u) = {i1i3, i2i3, i3i4, i4i5} among five active

players. Both ({i1, i2, i4} , {i3, i5}) and ({i1, i2, i5} , {i3, i4}) are seller-markets but not their union

({i1, i2, i4, i5} , {i3, i4, i5}). Note that each of the two seller-markets contains the unitary seller-

market ({i1, i2} , {i3}).)
Theorem 4 says that, at any aspiration, the union of all unitary seller-markets is equal to the

union of all solitary-player-markets at any solitary-minimal matching. We will need the following

fact.

Lemma 6 Let (B, S) be any bipartite submarket at u. (B, S) has no nonsolitary player at any

active-minimal matching µ at u.

Proof. Suppose to the contrary that a bipartite submarket (B, S) at u has a nonsolitary player

i at µ, where µ is an active-minimal matching at u. By Lemma 1 every S-player is matched at

µ therefore i ∈ B. So there is a µ-cycle i0, i1, ..., in, j1, ..., jn from i0 = i where j1 ∈ S. Then, by

alternation, there is an active-minimal matching µ′ at u that leaves j1 unmatched, contradicting

Lemma 1.

Theorem 4 The seller-market (B∗, S∗) at u is identical to the seller-market (Bµ, Sµ) for any

solitary-minimal matching µ at u.

The proof follows from Proposition 4 and Lemma 6 :

Proof. Let µ be any solitary-minimal matching at u. By Proposition 4 (Bµ, Sµ) ⊂ (B∗, S∗). We

will show that (Bµ, Sµ) contains every unitary seller-market which completes the proof.

Let (B, S) be any unitary seller-market at u, B0 be the set of all B-players unmatched at µ, S ′

be the set of all µ-reachable players from B0-players and B′ = B0 ∪ µ(S ′). By Lemma 6 B0 ⊂ Aµs

so (B′, S ′) ⊂ (Bµ, Sµ). We will show (B, S) = (B′, S ′).

By construction, no B′-player has demand for any player in S−S ′ (since S−S ′ is “unreachable”

from B0). Also µ(B − B′) ⊂ (S − S ′) since µ(S ′) ⊂ B′. Therefore µ matches B − B′ to S − S ′

(otherwise S is not matchable into B.) Then B − B′ and S − S ′ must be empty because (B, S) is

unitary (otherwise S is not matchable to B − i for some i ∈ B −B′.).
Theorem 3 directly follows from Theorem 4.

Theorem 4 holds only in the aggregate. A unitary seller-market need not be a solitary-player-

market :
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Example 2 Consider an aspiration u where D(u) = {i1i4, i2i4, i3i4} among four active players

i1, i2, i3, i4. Let B = {i1, i2} and S = {i4}. Then (B, S) is a unitary seller-market but not a solitary-

player-market at the solitary-minimal matching µ = {i3i4}.

We call (B∗, S∗) the Seller-Market at u. The Market Procedure we give in Section 6 for finding

a settled aspiration is a Seller-Market tracing procedure. We will use the following fact in proving

its convergence.

The excess in the Seller-Market is equal to the size of a solitary set :

Corollary 1 |B∗| − |S∗| = σ(u).

The statement below gives a characterization for solitary-minimal matchings ; the “only if” part

follows from the proof of Proposition 4 and “if” part follows from Theorem 4.

Corollary 2 An active-minimal matching µ is solitary-minimal if and only if all the µ-sequences

from solitary players are cycle-free.

3.3 Stable and Semistable Allocations

Let u be a nonrealizable settled aspiration and µ be a solitary-minimal matching at u. By Theorem

3, active-unmatched players are nonsolitary. Let Ci be a µi-cycle for each nonsolitary player at µ.

Then

Ci ∩ Ci′ = ∅

for i 6= i′, since otherwise µ can be augmented to a matching where i, i′ are matched, contradicting

the fact that µ is active-minimal.

Proposition 5 A nonrealizable settled aspiration is a semistable allocation.

The proof is constructive :

Proof. Let u be a nonrealizable settled aspiration and µ be a solitary-minimal matching at u.

Then there is at least one nonsolitary player at µ. For every nonsolitary i, pick a µ-cycle Ci =

i0, i1, ..., in, j1, ..., jn. Let µi and νi respectively be the matchings that consist of all pairs ikjk and

ik−1jk with jk ∈ Ci. Let ν ′i = νi ∪ i0in and µ+, ν+ respectively be the union of µi, ν
′
i over all

unmatched i. Denote ν the matching µ−µ+ and χ the half-matching µ+∪ν+. Then (ν, χ) matches

every active player at u. So u is a semistable allocation.

We note that the construction in the proof above gives a unique semistable allocation (u, ν, χ)

if and only if there is a unique µ-cycle from every nonsolitary player i at µ.
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As we noted earlier, half-matched players at a semistable allocation (u, ν, χ) partition into cycles

of players. The construction in the proof above always gives rise to half-partner cycles that contain

an odd number of players. But even half-partner cycles may also exist : Consider, for example,

an aspiration u where D(u) = {i1i2, i2i3, i3i4, i4i1} among four players and it is possible for every

player to be half-matched. In particular there may exist a stable allocation (u, µ) and a semistable

allocation (u, ν, χ).

Another example to coexistence of stable and semistable allocations is provided by an aspiration

u where D(u) = {i1i2, i2i3, i3i1} and i1, i2 are active while i3 is nonactive. Here there is a stable

allocation with the full-partnership i1i2 as well as a semistable allocation with the half-partnerships

i1i2, i2i3, i3i1.

We call a semistable allocation (u, ν, χ) essential if it has a minimum number of half-partner

cycles among all allocations at u. So if there is a stable allocation then no semistable allocation is

essential.

From Proposition 5 and Theorem 1, it follows that there exists a stable allocation or a semistable

allocation. We now have the following stronger version :

Corollary 3 There exists either a stable allocation or an essential semistable allocation.

3.3.1 Even Populations

Let us say that players i and i′ are of the same type if

fij = fi′j

for all players j other than i′ and i.25

Theorem 5 There is a stable allocation if there are an even number of players of each type.

Proof. By Proposition 1, there is a settled aspiration, say u. We will show that u is a stable

allocation. Suppose not.

Let µ be a solitary-minimal matching at u. Since u is nonrealizable, µ leaves an active player

unmatched, say i. Note that i is nonsolitary at µ, because otherwise by Proposition 4 u has a

seller-market and is not settled.

Let C be a µ-cycle from i which consists of a maximum number of players. Since there are an

odd number of players in C, there must be two same-type players, say j, j′, such that j is in C and

j′ is not in C. We claim

uj = uj′ .

25If there are only two players in a type, say i, i′, then fii′ may be any partnership function. If there are more

than two, then fii′ is neccessarily “symmetric” with respect to equal utility realization.
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If not, then uj < uj′ (otherwise no C-player demands j at u contradicting j ∈ C). Then no

player other than j demands j′ at u. So Dj′(u) = {j} (otherwise Dj′(u) is empty but j′ is active

at u). Hence j′ is unmatched at u. But then µ is augmentable contradicting the fact that µ is

active-minimal. End of claim.

Therefore there is a C-player who demands j′ at u. Then j′ must be matched at u (otherwise

µ is augmentable therefore not active-minimal). But then there is a µ-cycle from i (obtained by

“adding” the pair (j′, µ(j′)) to C) which contains a greater number of players. Contradiction.

When there are an even number of players in each type, it is easily seen that, there is a stable

allocation where same-type players get the same payoff. This is not true at every stable allocation,

as is evident by considering a two-player Game. When there are more than two players in each type,

though, it is easily shown that same-type players get the same payoff at every stable allocation.

Theorem 5 generalizes to the NTU domain the main result of Chiappori, Galichon and Salanie

(2012). (In a general population, clearly, leaving out any one player in each type with an odd

number of players would give a Pairing Game with an even population for which Theorem 5 holds.)

We would like to mention that Theorem 5 can be gotten in two other ways. One of these involves

the fact that the stable allocations of a two-fold Pairing Market/Game coincide with the stable

allocations of the two-sided Market/Game which has one copy of each type.26 The other way is to

set up a similar equivalence in the extended model with half-partnerships and use Proposition 5.

4 Properties of the Set of Settled Aspirations

We have shown that a settled aspiration always exists and that a settled aspiration is either a

stable allocation (with full-partnerships) or an essential semistable allocation (with some or all

half-partnerships.) Each settled aspiration is at the same time a competitive equilibrium allocation.

It is appropriate to think of the set of all settled aspirations as the Extended Core or the Equilibrium

Set. Let us denote this set U . By Corollary 3, U consists entirely of stable allocations or of essential

semistable allocations. For simplicity we will assume that all semistable allocations that form are

essential.

In this section we show some properties that U has independent of whether it consists of stable

or semistable allocations. We also show that each settled aspiration is “active-minimal” in the sense

that the number of unmatchable active players is minimum among all aspirations.

Clearly U is a closed bounded set.

26As Chiappori, Galichon and Salanie (2012) do on the TU domain.
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4.1 Virtual Convexity

Say that a vector z is between two vectors z, z′ if

zi ∈ (min {zi, z′i} ,max {zi, z′i})

in case zi 6= z′i and zi = zi = z′i otherwise. Call an arbitrary set Z in RN virtually convex if for

every z, z′ ∈ Z there is a z ∈ Z that is between z, z′.

Proposition 6 The Equilibrium Set is a virtually convex set.

Proof. Suppose U is the Equilibrium Set of a piecewise linear Game. Take any u, u′ in U . By

Proposition 2 the pair of player sets (N+
uu′ , N

−
uu′) is a balanced-market and by Lemma 2 there exist

payoffs between u, u′ that belong to U . By uniform approximation, the result holds for any Game.

A virtually convex set is equivalently (i) a set such that any two elements in the set are connected

by a continuous “monotone” path that lies in the set, or (ii) a set such that any point outside can

be separated from the set by an orthant. See Alkan and Gale (1990). It is straightforward that U

is a convex polyhedral set if the partnership functions fij are linear.

4.2 Constant vs Free Players and Median Settled Aspirations

Let us call a player i a constant player if ui = u′i for every u, u′ in U and call i a free player

otherwise.

Proposition 7 Every stable or semistable allocation at any settled aspiration fully matches a free

player with a free player.27

Let us denote the sets of constant and free players C and F respectively. Proposition 7 says

that, at any equilibrium, each player in half-partnership is in C and each player in F is in full-

partnership with a player in F . It is worthwhile to add the following observation : Consider the

Market/Game restricted to constant players, i.e., (C, f). It is easily seen that the Equilibrium Set

of (C, f) is identical to UC = {(ui)|i ∈ C, u ∈ U}. The Equilibrium Set of (F, f) on the other hand

is in general a superset of UF = {(ui)|i ∈ F, u ∈ U}. For example, when N = {1,2,3} and the

worth of a pair is 3 for {1,2} and 1 otherwise, U = {x, 3− x, 0} where 1 ≤ x ≤ 2. F = {1,2} and

the Equilibrium set of (F, f) is {x, 3− x} where 0 ≤ x ≤ 3.

27Recall the players labelled independent in the Gallai-Edmonds Decomposition Theorem. Every free player is an

independent player except possibly at the boundary of U .
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We next show that the Equilibrium Set U always contains a settled aspiration that is a generalized

median of any finite collection of settled aspirations. As Schwarz and Yenmez (2011) have shown,

in the two-sided TU case, U always contains the median of any odd collection and the upper and

lower median of any even collection.28

Let K be any finite set consisting of k payoff vectors. Let m = k/2 for k even and m =

(k + 1)/2 for k odd. For every player i, order her k payoffs over K in any nonincreasing way. Let

vi be her mth (weakly) highest payoff. Now let vi be her m+ 1st highest payoff for k even and mth

highest payoff for k odd. Note that vi ≤ vi in general and that vi = vi for k odd. We define

med(K)i = [vi, vi] .

Proposition 8 Given any finite collection of settled aspirations K, there is a settled aspiration

u ∈ U with ui ∈ med(K)i for every i.

4.3 Stable Bipartitions

For further insight on U , we ask whether free players separate into two sides anywhere at the

variable Equilibrium Set UF = {(ui)|i ∈ F, u ∈ U}. We let N = F below for simplicity.

We say that (N1, N2) is a stable bipartition at u if N = N1 ∪N2 and

µ(N1) = N2

for every stable allocation (u, µ) and that (N1, N2) is a stable bipartition at U if it is a stable

bipartition at every u in U .

Lemma 7 There exist a stable bipartition at any u in U.

Proof. Suppose there is no stable bipartition of N at some u in U. Let u′ be any allocation where

N+
uu′ and N−uu′ contain a maximum number of players. Then, there exist a free player i such that

ui = u′i (otherwise (N+
uu′ , N

−
uu′) is a stable bipartition at u by Proposition 2). Let u′′ be an allocation

in U such that u′′i 6= u′i. Pick any allocation u that is between u′ and u′′ and sufficiently close to u′.

Since u′j 6= uj for every j in N+
uu′ ∪N

−
uu′ , by Proposition 6 uj 6= uj for every j in N+

uu′ ∪N
−
uu′ . Also,

ui 6= ui (since u′i = ui and u′′i 6= ui). Contradiction.

We next show that there always exists a stable bipartition at U on the transferable utility

domain, that is, for quasilinear Games (N, f) where the partnership have the form

fij(uj) = cij − uj.
28Eriksson and Karlander (2001) show the median property for any three stable allocations.
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Lemma 8 If (u, µ) is a stable allocation at some u in U , then (u′, µ) is a stable allocation at every

u′ in U.

Proposition 9 There exist a stable bipartition at U if (N, f) is quasilinear.

Proof. By Lemma 7, let (N1, N2) be a stable bipartition at some u in U . By Lemma 8, (N1, N2)

is a stable bipartition at U .

Proposition 9 tells us that, on the TU domain, the Equilibrium Set of a non-two-sided Mar-

ket/Game is, constant players aside, two-sided and has essentially the same properties as the Equi-

librium Set of an assignment game. In particular, with reference to Schwarz and Yenmez (2011)

again, the Equilibrium Set of every non-two-sided TU Market/Game has a unique median settled

aspiration.

On the NTU domain, on the other hand, Proposition 9 does not hold and Proposition 8 is

particularly relevant. Below is a heterogenously linear (N, f) where there is no stable bipartition

at U .

Example 3 There are six players in N = {1,2,3,4,5,6}. The partnership functions fij satisfy

ui = fij(uj) = cij − qijuj

where the pair (cij, qij) is equal to

(15, 2) for ij ∈ {12,23,31} and (15/2, 1/2) for ij ∈ {21,32,13}

(30, 10) for ij ∈ {46,65,54} and (3, 1/10) for ij ∈ {64,56,45}

(10, 1) for ij ∈ {14,41,25,52,36,63}

and (0, 0) otherwise. It is straightforward to check that the demand graphs at the three allocations

u = [7, 9, 3, 3, 2, 10], u′ = [3, 7, 9, 10, 3, 2], u′′ = [9, 3, 7, 2, 10, 3]

are

D(u) = {(14),(23),(56)},D(u′) = {(13),(25), (46)},D(u′′) = {(12), (45), (36)}

respectively (see Figure 4) and that each allocation is realizable by a unique matching. It is also

straightforward to check that there is no partition of N to two sides such that each of these matchings

matches one side to the other.
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(b) D(u′)
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(c) D(u′′)

Figure 4: Example 3

4.4 Settled Aspirations are Active-Minimal

Here we show that, at every settled aspiration, there is a full-partnership matching that leaves a

minimum number of active players unmatched among all aspirations. We will make use of this

property in the next section.

Formally, let us recall that a matching µ at an aspiration u is active-minimal if µ leaves un-

matched a minimum number of active players, in other words, if α(u) = |Aµ(u)|. We call an

aspiration u active-minimal if α(u) ≤ α(u′) for every aspiration u′.

Proposition 10 Every settled aspiration is active-minimal.

There may exist active-minimal aspirations that are not settled : In fact consider any aspiration

u in a three-player Market/Game where each player is active and D(u) consists of two pairs. Clearly

u is not settled but active-minimal.

5 Pseudostable Allocations and Bargaining Set Stability

So far we have looked at Pairing Games from the point of view of the core and competitive equi-

librium as solution concepts. We have shown that, in an environment where half-partnerships

are viable, stable or semistable allocations always exist. More precisely, we showed that settled

aspirations always exist and generate stable or semistable allocations, that are at the same time

competitive equilibrium allocations.

In this section we adopt a broader perspective and consider what may happen in a Pairing Game

when half-partnerships are not viable - in particular when there is no stable allocation. We will

show that two particular types of allocations - “maximum-stable” and “pseudostable” allocations

- have distinctive properties. The first of these is grounded on the active-minimality property we

defined in the previous section. The latter is intimately related - as semistable allocations are -

to solitary minimal matchings at nonrealizable settled aspirations. (Pseudostable allocations are

maximum-stable.)
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5.1 Maximum-Stable and Pseudostable Allocations

We need to define “aspiration-allocations” and “restricted-stable” allocations.

We use the following notation : For any payoff z and matching µ, we denote zµ the payoff where

zµi = zi for i ∈ µ(N) and zµi = 0 for i /∈ µ(N).

An allocation (v, µ) is an aspiration-allocation if v is extendible to an aspiration u, in other words,

if there is an aspiration u such that

uµ = v.

Aspiration-allocations are abundant : Every aspiration u and every matching µ at u generates an

aspiration-allocation uµ.

Let (v, µ) be an allocation and consider any set of players T that contains or is equal to the

set of all matched players µ(N). Note vi = 0 for any T -player i not in µ(N). We say (v, µ) is

T -restricted-stable if the restriction of v to T is a stable allocation in the “restricted” Game (T, f).

(Note that players in T − µ(N) are nonactive.) We call (v, µ) restricted-stable if it is T -restricted-

stable for some T ⊇ µ(N). A straighforward yet significant observation is the following which we

state without proof :

Proposition 11 An allocation is restricted-stable if and only if it is an aspiration-allocation.

Now let (v, µ) be an allocation and T be the largest player set containing µ(N) such that (v, µ)

is T -restricted-stable. Call the players in N − T the outcasts of (v, µ).

Definition 3 An allocation is maximum-stable if it is a restricted-stable allocation that has the

minimum number of outcasts among all restricted-stable allocations.

Maximum-stable allocations are the counterpart of the maximum stable matchings defined and

proposed by Tan (1990) as a solution concept for roommate problems with empty core.29

Now let us recall the definition of an active-minimal aspiration given in the previous section.

From Proposition 11, we have the following observation.

Corollary 4 An allocation is maximum-stable if and only if it is an aspiration-allocation uµ where

u is active-minimal and µ is active-minimal.

As mentioned above, aspiration-allocations form a very large class. It will be useful to identify

certain (nested) subclasses of aspiration-allocations (see Figure 5) : Let us say that an allocation

29Also see Inarra, Larrea and Molis (2008).
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all allocations

aspiration-allocations ≡ restricted-stable allocations

super-weak-maximal allocations

weak-maximal allocations

local-maximal allocations

maximum-stable allocations

maximal settled-aspiration-allocations

pseudostable allocations

Figure 5: Allocation Types

(v, µ) is weak-maximal if v is extendible to an aspiration u where ui = uj = 0 for any ij ∈ D(u)

such that i, j /∈ µ(N). It is easily seen that a weak-maximal allocation has a unique extension to an

aspiration. In words, then, a weak-maximal allocation is an aspiration-allocation where there is no

active-unmatched player who has demand for an unmatched player. Weak-maximal allocations form

a large class. An important subclass is the set of aspiration-allocations uµ where µ is active-minimal;

we call them local-maximal.30

We will refer to a local-maximal aspiration-allocation uµ where u is settled as a maximal settled-

aspiration-allocation. Since settled aspirations are active-minimal (Proposition 10), from Corollary

4 we have :

Corollary 5 Every maximal settled-aspiration-allocation is a maximum-stable allocation.

It follows from the observation following Proposition 10 that a maximum-stable allocation need

not be a settled-aspiration-allocation.

We finally introduce the subclass of maximal settled-aspiration-allocations we are particularly

interested in :

Definition 4 An aspiration-allocation uµ pseudostable if u is a nonrealizable settled aspiration and

µ is solitary-minimal.

In the subsection below, we look at a Pairing Game and pseudostable allocations from a Bar-

gaining Set perspective.

30A subclass of local-maximal aspiration-allocations are the ones associated with solitary-minimal matchings. The

Market Procedure we give in the next section operates on this class.
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Remark 1 Not surprisingly, pseudostable and semistable allocations are closely related. We now

briefly describe this relationship while emphasizing that they pertain to different institutional envi-

ronments : By definition, every nonrealizable settled aspiration u in U generates the set of pseu-

dostable allocations

PS(u) = {uµ|µ solitary minimal at u} .

It can be seen from the construction of a semistable allocation (in the proof of Proposition 5) that

PS(u) is related to the set of semistable allocations at u in the following manner : Let (u, ν, χ)

be an essential semistable allocation at u and H ⊂ N be the players in the half-matching χ. As

previously noted, H partitions into n odd-cycles Ck where n is equal to the number of (nonsolitary)

active-unmatched players at any solitary-minimal matching µ at u. In fact, µ is a solitary-minimal

matching at u if

µ = ν ∪ ν1... ∪ νn

where νk is a matching in Ck that leaves one player in Ck unmatched. In particular, there is a

solitary-minimal matching µ at u for every selection of n players from C1 × ... × Cn. Associated

with each essential semistable allocation (u, ν, χ) then, we obtain a set of |C1| × ...× |Cn| solitary-

minimal matchings or pseudostable allocations at u. PS(u) is their union over all the essential

semistable allocations at u.

5.2 Bargaining Set Stability

The three-person Pairing Game has been intensively studied for bargaining with pair formation

and extensions of the core. To summarize briefly, let us first note that in any three-person Game

where there is no stable allocation, there is a unique settled aspiration u = (u1, u2, u3) and - the

null allocation (0, 0, 0) aside - the aspiration-allocations generated by u are

(u1, u2, 0), (u1, 0, u3), (0, u2, u3).

Binmore (1985) put forward these three allocations as the “stable set” : He demonstrated that the

triplet (u1, u2, u3) is the only mutually consistent endogenous outside-option vector - when any two

players may bargain and the outside player is a potential partner in case they cannot agree - from

which follows the unique realizability of the three allocations above.31 There is also the following

two-step farsighted stability or Bargaining Set argument : Each of the three allocations if realized

would survive - because a prudent player would not be lured into forming a blocking pair with

31See Footnote 10. Bennett (1997) has shown that there always exist “consistent endogenous outside-options” in

general cooperative games, that they are aspirations, and that a wide set of aspirations turn out as the subgame

perfect equilibrium outcomes of sequential offer games.
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the odd-man-out since he could in turn become the odd-man-out. And no other allocation would

survive.

The three-person case is of course a very special one. Our pursuit here is in the direction of

whether there is a natural generalization of the three-person “stable set” for Pairing Games with any

number of players. We give a partial answer. We show that pseudostable allocations always belong

to the (two) Bargaining Sets that we consider. We then show that there are some non-pseudostable

allocations that also belong and observe their properties.

There are several definitions and variants of what a Bargaining Set is. We employ two : the Zhou

Bargaining Set (Zhou (1994)) and the Demand Bargaining Set proposed by Morelli and Montero

(2003). The former has the following definition :

Let u be an allocation. An objection from a coalition T against u is a pair (T, u′) where u′ is an

allocation for the restricted Game (T, f) and

u′i > ui for all i ∈ T .

A counterobjection from a coalition Q to (T, u′) is a pair (Q, u′′) where u′′ is an allocation for the

restricted Game (Q, f) such that

Q− T 6= ∅, T −Q 6= ∅, T ∩Q 6= ∅

and

u′′i ≥ ui for i ∈ Q− T and u′′i ≥ u′i for i ∈ T ∩Q.

An objection against u is justified if there is no counterobjection to it. An allocation is in the Zhou

Bargaining Set Z if there is no justified objection against it.

It is well known that a Bargaining Set - Z included - is typically “large” and not sufficiently

exclusive in describing bargaining outcomes. One of our reasons in considering the Demand Bar-

gaining Set D in addition to Z is that D is more exclusive than Z. We give the definition of D

by stating the differences it has with the definition of Z.32 There are four differences :

(i) the allocation under consideration is an aspiration-allocation uµ,33

(ii) u′′i = ui for i ∈ Q,

(iii) u′′i > u′i for i ∈ T ∩Q and

(iv) Q− T or T −Q may be empty.

32The definition of D in Morelli and Montero (2003) is for TU games.
33Morelli and Montero (2003) allow more general allocations but show that the Demand Bargaining Set consists

of aspiration-allocations.
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There will in general be many allocations that belong to Z but not to D. This is not only

because D admits aspiration-allocations only but also because counterobjection is highly restricted

in the definition of D in comparison to Z - primarily on account of condition (ii). Let us also note

that if condition (iv) were excluded then D would be a subset of Z. We show below that condition

(iv) is in fact vacuous and D is a subset of Z :34

Lemma 9 D ⊂ Z.

We now show that pseudostable allocations are in D and therefore in Z as well. We actually

do so by first giving a characterization for D which we also use in the second example below and

which is of independent interest.

Let us say that an aspiration-allocation uµ is super-weak-maximal if there is no demand between

any two players who are active at u and unmatched by µ.35

Proposition 12 An aspiration-allocation uµ is in D if and only if it is super-weak-maximal and u

has no balanced market (B, S) where every B-player is unmatched at µ.

Proposition 13 Every pseudostable allocation is in the Demand Bargaining Set and therefore in

the Zhou Bargaining Set.

Proof. Suppose uµ is a pseudostable allocation not in D. By Proposition 12, there is a balanced

market (B, S) at u such that B ⊂ N − µ(N). But then, by Theorem 3, B-players are nonsolitary

at [u, µ]. This contradicts with Lemma 6.

Proposition 13 says that pseudostable allocations are “stable” from an “exclusive” Bargaining

Set perspective. As we mentioned, on the other hand, the Demand Bargaining Set D may contain

non-pseudostable allocations. We show in the examples below that these may in fact be various not

fitting into a classification at hand.

Example 4 shows that D may contain non-pseudostable maximal-settled-aspiration-allocations

but not all. Example 5 shows that D may contain maximal nonsettled -aspiration-allocations.

Example 5 also displays dominated (local-maximal) allocations that are in the Zhou Bargaining Set

Z and excluded by D. It is worth adding that, in our context, the null-allocation is not in D but

may be in Z, for instance, in any three-person Game where there is no stable allocation.

Example 4 There are five players in N = {1,2,3,4,5}. The worth of a partnership is 2 for the

pairs in

{12,13,23,34,45}
34Morelli and Montero (2003) show the same for TU games.
35Note that weak-maximal allocations are super-weak-maximal.
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and 0 otherwise. Let u = (1, 1, 1, 1, 1) and µ = {12,34} (see Figure 6(a)). Clearly u is a settled

aspiration and µ is an active-minimal but not solitary-minimal matching at u. Let T = {4,5} and

u′ = (u′4, u
′
5) = (1 + ε, 1− ε) where 0 < ε < 1. It is easily checked that (T, u′) is a justified objection

to uµ so uµ is not in Z and therefore not in D.

Now consider the extended game with four additional players {6,7,8,9} where the worth of a

partnership is 2 for the pairs in

{12,13,23,34,45,56,67,78,79,89}

and 0 otherwise. Let u = (1, 1, 1, 1, 1, 1, 1, 1, 1) and µ′ = µ ∪ {67,89} (see Figure 6(b)). Clearly,

again, u is a settled aspiration and µ′ is an active-minimal but not solitary-minimal matching at u.

Using Proposition 12, it is easy to see that uµ
′
is in D and therefore in Z.

3

2

1

4 5

(a)

3

2

1

4 5 6 7

8

9

(b)

Figure 6: Example 4

Example 5 There are two sets - I and J - of same-type players where |I| = n ≥ 3 and J consists

of two players say j, j′. The worth of a pair with one player from each set is 2 and with both players

from I is 2− 2ε (where 0 < ε < 1.) The players j, j′ cannot form a pair with each other.

The payoff u where ui is equal to 1−δ for i ∈ I and 1+δ for j ∈ J is an aspiration for every δ ≤ ε.

(It is a nonsettled aspiration for every δ < ε and a settled aspiration for δ = ε.) The demand graph

D(u) is equal to {ij, ij′|i ∈ I} for δ < ε (see Figure 7(a)) and equal to {ij, ij′|i ∈ I} ∪ {ii′|i, i′ ∈ I}
for δ = ε (see Figure 7(b)). Let µ be any matching that consists of two pairs ij and i′j′ where

i, i′ ∈ I and j, j′ ∈ J .

It is easily seen that uµ is in Z for any odd n for all δ ≤ ε. Note that uµ is dominated for

n ≥ 5 : There are n − 2 unmatched I-players all but one of whom can form a pair with another

unmatched I-player and achieve a payoff equal to 1− ε strictly above her stand alone utility.

On the other hand, by Proposition 12, uµ is not in D for n > 3 for any δ ≤ ε. To see this, let

I0 = {i, i′} ⊂ I be any two unmatched players. In case δ < ε, (I ′, J) is a balanced market with I0
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⊂ N − µ(N), and in case δ = ε, µ is not super-weak-maximal at u, so in both cases uµ is not in D

by Proposition 12.

It is easily checked that uµ is in D for n = 3 for any δ ≤ ε.

i1

j1

i2

j2

· · · ik · · · in

(a) δ < ε

i1

j1

i2

j2

· · · ik · · · in· · ·· · ·

(b) δ = ε

Figure 7: Example 5

We have shown that pseudostable allocations are “stable” from a Bargaining Set perspective.

But some other allocations also are. Even the exclusive Demand Bargaining Set may contain

nonsettled-aspiration-allocations.36 “Market forces” are not enough - allocations realized at seller-

markets may survive even when a competitive equilibrium exists.

In the next section, we give a coordinated Market Procedure that always arrives at an aspiration

where there is no seller-market.

6 Market Procedure

In this section we describe a Procedure for finding a settled aspiration. The Procedure works for all

piecewise linear partnership functions. For simplicity, we restrict our presentation to heterogenously

linear partnership functions that have the form fij(uj) = cij − qijuj. The Procedure starts from

any aspiration, generates a piecewise linear path of aspirations, and stops in a bounded number of

steps at a settled aspiration.

Here is a preview : The Procedure is coordinated by a Center that displays an aspiration at

each moment and players register their demand sets at that aspiration. (Since demand is reciprocal,

i registers j if and only if j registers i.) The Center observes all the demand sets (i.e., the demand

graph) and stops if there is no seller-market. Otherwise, the Center chooses a seller-market and

adjusts the aspiration along a suitable direction. The demand graph changes at a number of

aspirations. The Center collects all the changes and resets the direction when a “critical” change

36This may be compared with Klijn and Masso (2003) who show that the core in the discrete two-sided case is

essentially equivalent to the Zhou Bargaining Set.
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occurs. In resetting the direction, the Center interacts with a particular subset of players about

their “marginal” demand sets. On the quasilinear domain (where qij = 1) resetting the direction

requires no such interaction.

The aspiration is adjusted for those players who constitute the seller-market at that aspiration.

Sellers’ payoffs increase and buyers’ payoffs decrease. The other players remain unaffected. The

Center can actually choose any seller-market. In the Procedure we present here, it is the “grand”

Seller-Market - the union of all unitary seller-markets - that is chosen at each aspiration. The

Center is able to keep track of the Seller-Market continuously on the path of aspirations, by an

algorithm that is based on the fact that the Seller-Market is also the union of all solitary-player-

markets (Theorem 4).

There is a single criterion for admitting a direction d at any aspiration u on the path, namely the

requirement that the Seller-Market at u+λd is identical to the Seller-Market at u for all sufficiently

small λ > 0. When the Seller-Market changes at an aspiration, the Center needs to find a Seller-

Market preserving direction. On the quasilinear domain, the direction that has the entry +1 for

every Seller, −1 for every Buyer and 0 for all other players ensures this. On the more general

domain, the Center implements the Direction Procedure we describe below.

To conclude the preview, there is actually one other situation where the Center has to reset

the direction. This occurs when the path arrives at an aspiration where the Seller-Market has not

changed but would change for any continuation along the “current” direction. Such a situation

may arise only when a new demand is registered by a Buyer Seller pair, in particular, not on the

quasilinear domain.

Formally, let u be an aspiration and d be a feasible direction at u.

Note that, by linearity of the partnership functions, the demand graph D(u + λd) is identical

for all sufficiently small λ > 0. We denote this graph

D+(u, d)

and call it the outgoing directional demand graph. We will say that a direction d is Seller-Market-

Preserving at u if the Seller-Market at u is identical to the Seller-Market in D+(u, d).

Next note that D(u − λd) is similarly identical for all sufficiently small λ > 0. We denote this

incoming directional demand graph

D−(u, d).

Likewise the set of active players A(u − λd) is identical for all sufficiently small λ > 0 which we

denote

A−(u, d).
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Clearly, the demand graph changes at u if and only if

D(u) 6= D−(u, d) or A(u) 6= A−(u, d).

It is important to note this may happen finitely often and when it does

D(u) ⊃ D−(u, d),

A(u) ⊂ A−(u, d).

Market Procedure

Step 0 : Take any aspiration u = u1.

Step t : End if there is no seller-market at ut. Otherwise, find a Seller-Market-

Preserving direction dt by the Direction Procedure below. Then, display the aspiration

ut + λdt

as λ increases above 0 and let the Buyers in the Seller-Market register the changes in

their demand sets. Stop at the earliest ut+λ∗dt where dt is not Seller-Market-Preserving.

Set

ut+1 = ut + λ∗dt.

The Center’s role is to keep track of the Seller-Market, and ensure that aspirations follow a Seller-

Market-Preserving path, by implementing the Direction Procedure below when the path needs to

be reoriented. On the heterogenous domain where fij(uj) = cij − qijuj, the Direction Procedure

utilizes the information

f ′ij = −qij.

We have adapted the Direction Procedure below from Alkan (1997) where it is given for arbitrary

piecewise linear partnership functions.37 The Procedure is a “multiplicative” analog of the well-

known Demange, Gale and Sotomayor (1986) multi-item auction and has identical convergence

properties.

Let (Bt, St) be the Seller-Market at the aspiration ut. Let us suppress reference to ut and write

D = D(ut) and D+(e) = D+(ut, e). Also let B∗ = Bt and S∗ = St.

37See the proof of Lemma 2 in the Appendix. Convergence is easily seen.
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The Direction Procedure

Step 0 : Set the initial direction to be the vector e1 where e1i is equal to 1 if i ∈ S∗,
minj εDi{qij} if i ∈ B∗, and 0 otherwise.

Step k : End if the Seller-Market (B∗, S∗) in the demand graph D is the Seller-

Market in the directional demand graph D+
B∗(e

k) and set dt = ek. Otherwise, find the

Seller Set Sk in D+
B∗(e

k) and set eki (δ) equal to

(1 + δ)eki for iεSk,

eki for iε(S∗ − Sk),

min
j εDi

{qijekj} for iεB∗.

Then alter the direction ek(δ) by increasing δ continuously above 0 up to δ∗ where a

new pair joins D+
B∗(e

k(δ)). Set ek+1 = ek(δ∗).

Theorem 6 The Market Procedure reaches a settled aspiration in a finite number of steps.

It is immediate from the stopping rule that Market Procedure ends at a settled aspiration.

Finite38 convergence follows essentially from Lemma 10 below.

Lemma 10 Let (ut) be any sequence of aspirations generated by the Market Procedure, (Bt, St) be

the Seller-Market at ut and at = |Bt| − |St| , bt = |St|. Then, for all t,

at+1 ≤ at,

and if at+1 = at then

bt+1 ≥ bt,

moreover if at+1 = at and bt+1 = bt then

(Bt+1, St+1) = (Bt, St).

We give the proof of Lemma 10 following Proposition 15 at the end of the subsection below.

Proof. (Theorem 6) Clearly (at) is bounded below and (bt) bounded above. Therefore Theorem 6

would fail to hold only if there is a T such that at = at+1 and bt = bt+1 for all t ≥ T . In that case,

the Seller-Market remains unaltered while only the direction changes for all t ≥ T. But by linearity

there are only a finite number of directions that can be encountered for all t ≥ T . Therefore it must

be that dτ = dτ
′

at two distinct steps τ < τ ′. However, this is impossible because then Step τ need

not have stopped at uτ+1.

38In fact, polynomially bounded.
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6.1 Identifying the Seller Market

It is fundamental in the Market Procedure that the Center observes how the Seller-Market changes

along the Procedure path. Below we give a “dynamic” algorithm that identifies the Seller-Market

at an aspiration given the Seller-Market at a “previous” aspiration. This enables the Center to

identify the Seller-Market continuously along the Procedure path. We then show that there is a

lexicographic monotonicity in three attributes of the Seller-Market along the Procedure path - (i)

the excess in the Seller-Market, (ii) the number of Sellers, (iii) the Seller-Market itself - which gives

the convergence of Market Procedure.

Let us call any two aspirations u, u′ successive if demands at u are demands at u′, i.e.,

D(u) ⊂ D(u′),

and active players at u′ are active at u, i.e.,

A(u) ⊃ A(u′).

Clearly, any two aspirations on the same linear segment of the Procedure path are successive.

Let u, u′ be any two successive aspirations and denote

D = D(u),D′ = D(u′), A = A(u), A′ = A(u′).

The Seller-Market Algorithm we present here finds a solitary-minimal matching µ′ and the solitary

set Aµ
′

s in (D′, A′) given a solitary-minimal matching µ and the solitary set Aµs in (D, A). The

Seller-Market at u′ is then identified as in Theorem 4.

Thus the Algorithm consists of two routines, which we name the Solitary-Minimal-Matching

Routine and the Solitary-Set Routine, the first for finding a solitary-minimal matching and the

second for finding a solitary set at that matching.

We call two successive payoffs u, u′ consecutive if A−A′ consists of a single player and D = D′

or D′ − D consists of a single pair and A = A′. It will be sufficient to give the Algorithm for

consecutive aspirations.

The Routine below simply names the obvious steps in finding a solitary-minimal matching.

Solitary-Minimal Matching Routine

Let u, u′ be any two consecutive aspirations and µ be a solitary-minimal allocation

in (D, A).

Step 1 : If µ is not active-minimal in (D′, A′) then augment/alter µ to an active-

minimal matching µ1.
39 Otherwise, let µ1 = µ.

39See Footnote 23.
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Step 2 : If µ1 is not solitary-minimal in (D′, A′) then alter µ1 to a solitary-minimal

matching µ2.
40 Otherwise, let µ2 = µ1.

Then let µ′ = µ2.

We say that a matching µ′ is a successor to µ if µ′ can be found by using the Routine above

given u, µ and u′.

Lemma 11 If u, u′ are consecutive aspirations and (B, S) is a unitary seller-market at u′ then

(B, S) is a seller-market at u.

Proof. Since A′ ⊂ A and D ⊂ D′, we only need to show that S is matchable into B in D. Let ν

be a matching that matches S into B in D′. In all cases except when the pair ij in D′ −D is in ν

and i ∈ B, j ∈ S, it is clear that ν also matches S into B in D. In the remaining case, let ν ′ be a

matching that matches S into B − i in D′, then ν ′ is in D.

It is worth pointing out that the result above holds neither for unitary seller-markets nor for

seller-markets consecutively. We use it below in showing that consecutive solitary sets are nested,

that is to say, a player who is not solitary at [u, µ] cannot become solitary at [u′, µ′].

Let As, A
′
s be the solitary sets at any two solitary-minimal matchings µ, µ′ at the consecutive

aspirations u, u′ respectively, where µ′ is a successor to µ, and A−s be the set of all As-players who

are active and unmatched in µ′.

Lemma 12 A′s ⊂ A−s ⊂ As.

Proof. A player i ∈ A′s is in A′ and therefore in A. Also, i is unmatched at the matching µ1

that is constructed in Solitary-Minimal Matching Routine (otherwise i /∈ A′s), and therefore also

unmatched at µ (otherwise i /∈ A′). By Proposition 4 i belongs to a unitary seller-market in (D′, A′),
and therefore by Lemma 11, to a seller-market in (D, A). Therefore i ∈ As by Lemma 6.

We next show that, excluding a particular occurrence, the solitary set A′s is equal to A−s : In

other words, a solitary player at [u, µ] remains solitary at [u′, µ′] except when she becomes matched

or nonactive. In the remaining “particular” case, a solitary player becomes nonsolitary and all

other solitary players (if any) remain solitary. In precise detail this occurs as follows : It takes place

when the “new” demand in D′ − D is a pair b1b2 where b1, b2 are two Buyers (in B∗) at u, and

the matching µ that is solitary-minimal at u remains solitary-minimal at u′, that is to say, when

the Solitary-Minimal-Matching Routine finds µ′ = µ (so b1b2 /∈ µ′.) Then, there is a µ′-cycle C to

which b1, b2 belong and the set As − A′s consists of the player who is the unmatched player in C

40See Corollary 2.
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(who is, to be more precise, the player b1 if b1 ∈ As, b2 ∈ (B∗ −As) and a player other than b1, b2 if

b1, b2 ∈ (B∗ − As) otherwise.) The Solitary-Set Routine below is a statement of these assertions :

Solitary Set Routine

Let u, u′ be any two consecutive aspirations and µ, µ′ solitary-minimal matchings at

u, u′ where µ′ is a successor to µ. Let As be the solitary set at [u, µ] and A−s be the set

of all As-players who are active-unmatched at [u′, µ′]. If

µ′ = µ and D′ −D = b1b2

where b1, b2 are two Buyers at u, then the unmatched player b in the µ′-cycle that

contains b1, b2 is nonsolitary at [u′, µ′] and

A′s = As − b,

otherwise

A′s = A−s .

Proposition 14 Let u, u′ be any two consecutive aspirations and µ, µ′ solitary-minimal matchings

at u, u′ where µ′ is a successor to µ. The solitary set at [u′, µ′] is obtained from the solitary set at

[u, µ] as in the Solitary Set Routine.

Proposition 14 follows directly from Lemma 13 in Appendix.

We complete our presentation of the Seller-Market Algorithm for consecutive aspirations with

the following result to be used in proving the convergence of Market Procedure.

Proposition 15 Let As, A
′
s be the solitary sets and (B∗, S∗), (B∗′, S∗′) be the Seller Markets at any

two consecutive aspirations u, u′. Then A′s ⊂ As. Also, if A′s = As then (B∗, S∗) ⊂ (B∗′, S∗′).

Moreover, if A′s = As and S∗′ = S∗ then (B∗′, S∗′) = (B∗, S∗).

The extension of the Seller-Market Algorithm to successive aspirations is straightforward because

any aspiration successive to another aspiration can be reached from the latter by a sequence of

consecutive aspirations in any order. In particular, Proposition 15 holds for successive aspirations

and therefore all along the Procedure path except possibly when the direction is reset. Since any

direction that is reset is Seller-Market-Preserving, the Algorithm keeps track of the Seller-Market

- and Proposition 15 holds - continuously along the Procedure path. In view of Corollary, then,

Lemma 10 holds and the proof of Theorem 6 is completed.
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7 Concluding Remarks

We have looked at Pairing Market/Games from both a coalitional game and a market equilibrium

perspective. It is worth highlighting that essential blocking coalitions in our context are pairs.

Relatedly, core and competitive equilibrium allocations coincide when they exist. We have looked

for extended solution concepts under nonexistence. Our search has delivered a rather complete

picture on the structure of Pairing Market/Games and two extended solution concepts. In one of

these - half-partnerships and semistable allocations - core and competitive equilibrium allocations

coincide.

In the second extension - prudent blocking and pseudostable allocations - coalitions of all sizes

may be essential, coincidence breaks down and “market forces” may be ineffective. It is worth

pointing out that the Demand Bargaining Set (Morelli and Montero 2003), which contains the

pseudostable allocations as we have shown, is in a way market-based. This is so because the

Demand Bargaining Set excludes allocations that are not aspiration-allocations and aspirations are

market-prices. Bennett (1983,1997) and Bennett and Zame (1988) have elaborated on this in their

work on general coalitional games. Indeed the Demand Bargaining Set in our context does filter out

many aspiration-allocations that belong to other Bargaining Sets. As we have shown, on the other

hand, it may contain allocations that are away from market equilibrium when there is one. It is

of interest what additional criteria would narrow down the Demand Bargaining Set or characterize

pseudostable allocations. Pairing Games are surely a relatively tractable class of coalitional games.

Our work here shows that they are at the same time an interesting class for reviewing the various

Bargaining Set solution concepts.

From a mathematical point of view, our work uncovers a continuous version of the Gallai

Edmonds Decomposition Theorem. We see as one of our main contributions the introduction and

utilization of solitary-minimal matchings in this context. We mention again that they give us our

main results : characterization of the Seller-Market at an aspiration, the definition of semistable

and pseudostable allocations, the Equilibrium Set, and the Market Procedure for reaching the

Equilibrium Set.

Finally a remark about a limiting case of our model : The partnership functions in our model do

not allow “flats” that arise under budget constraints for example. The broader model that allows

for flats can be uniformly approximated by our model and existence results would carry over. On

the other hand, some of our results on the properties of the Equilibrium Set do not and designing

a Market procedure appears more involved.41

41Alkan, Anbarci and Sarpça (2012) is an exercise in this domain.
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APPENDIX: OMITTED PROOFS

PROOF OF PROPOSITION 1 : The “only if” part is clear from Example 1. For the “if” part,

note that by active-minimality of µ, the demand set of every I-player is in J . So it remains to show

that I and J are disjoint. Suppose not : Then there are two µ-sequences i0, i1, ..., in, j1, ..., jn and

i′0, i
′
1, ..., i

′
m, j

′
1, ..., j

′
m from i0 = i′0 = i and a smallest index k such that (say)

jk = i′k′

for some 1 ≤ k ≤ n and 1 ≤ k′ ≤ m . Then k 6= 1 for otherwise the µ-sequence i′0, i
′
1, ..., i

′
k′ , j

′
1, ..., j

′
k′

is cyclic. For k ≥ 2, the µ-sequence i′′0, i
′′
1, .., i

′′
n′′ , j

′′
1 , ..., j

′′
n′′ where i′′0, i

′′
1, .., i

′′
k′ = i′0, i

′
1, .., i

′
k′ and

j′′1 , ..., j
′′
k′ = j′1, ..., jk′ also i′′k′+1, .., i

′′
n′′ = jk−1, ..., j1 and j′′k′+1, ..., j

′′
n′′ = ik−1, .., i1 is cyclic because

i′′n′′ = j1. Contradiction.

PROOF OF LEMMA 2 : Take any direction vector d such that

di > 0 for i ∈ S,

di = max
j∈Di (u)

{f ′ij(uj)dj} for i ∈ B,

di = 0 for i ∈ N −B ∪ S.

Clearly, d is a feasible direction at u. Let ν be any active-minimal matching in the directional

demand graph D+
B(u, d), namely the demand graph D(u+ λd) which is identical for all sufficiently

small λ > 0 (see Section 6.) If ν matches every S-player, then (B, S) is a bipartite submarket at

u+ λd for all sufficiently small λ > 0. Therefore, suppose ν does not match every S-player. Let B′

be the set of all unmatched B-players and S ′ be the set of all S-players which are ν-reachable from

B′-players in D+
B(u, d).

We claim that there is a feasible direction d∗ such that ν ⊂ D+
B(u, d∗) and (i) D+

B(u, d∗) contains

a matching of greater cardinality than ν or else (ii) the set of all S-players, say S ′∗, which are

ν-reachable from B′-players in D+
B(u, d∗) has a greater cardinality than S ′. By recursion, this will

prove the lemma since S is a finite set.

Set di(δ) equal to

(1 + δ)di for iεS ′ and di for iεS − S ′,

max
j∈Di (u)

{f ′ij(uj)dj(δ)} for iεB,

0 for i ∈ N −B ∪ S.

Alter the direction d(δ) by increasing δ continuously above 0 up to δ∗ where a new pair ij joins

D+
B(u, d(δ)). Set d∗ = d(δ∗). Note that D+

B(u, d) ⊂ D+
B(u, d∗) and hence ν ⊂ D+

B(u, d∗). Let
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B = B′ ∪ ν(S ′). See that (i, j) ∈ B × (S − S ′). Therefore, player j is ν-reachable from B′, i.e.,

j ∈ S ′∗. If j is unmatched at ν, then ν is not active-minimal at D+
B(u, d∗), in which case claim (i)

holds. Otherwise, S ′∗ has a greater cardinality than S ′ since j ∈ S ′∗−S ′ and S ′ ⊂ S ′∗. In this case,

claim (ii) holds. End of claim.

PROOF OF LEMMA 5 : Let µ, µ′ be any two active-minimal matchings. If a player i is

nonsolitary at µ, then there is a µ-cycle i0, i1, ..., in, j1, ..., jn from i0 = i. Let ν be an active-minimal

matching where in is unmatched. Suppose i is unmatched at µ′ and consider the µ′-sequence

C = i′0, i
′
1, ..., i

′
m, j

′
1, ..., j

′
m from i′0 = i with j′k = υ(i′k−1) and maximum length m. If i′m is matched

in ν, say ν(i′m) = j, then either µ′ is not active-minimal (when j is unmatched in µ′) or m is

not maximum length. Therefore, i′m must be unmatched in ν and then i′m = in (otherwise i′m is

ν-reachable from in and so ν is not active-minimal). Hence, C is cyclic and so i is nonsolitary at µ′.

PROOF OF PROPOSITION 7 : Let i be a free player and let u be any aspiration in U. Take

any u′ ∈ U such that ui 6= u′i. By Proposition 2, (N+
uu′ , N

−
uu′) is a balanced-market at u.

Case (i) : Let (u, µ) be a stable allocation. Every N+
uu′-player is active at u so in µ(N). Then µ

matches N+
uu′ to N−uu′ . Recall i is in N+

uu′ ∪N
−
uu′ . So µ(i) is also in N+

uu′ ∪N
−
uu′ hence a free player.

Case (ii) : Let (u, ν, χ) be a semistable allocation. Any player with whom an N−uu′-player is in

half-partnership or full-partnership must be in N+
uu′ , for otherwise by balancedness there would be

an N+
uu′-player unmatched or single-half-matched contradicting (u, ν, χ) is semistable. In particular

ν(N−uu′) ⊂ N+
uu′ . Also no N−uu′-player is in half-partnership because otherwise there would be an

even half-partner cycle in N+
uu′ ∪ N

−
uu′ contradicting (u, ν, χ) is essential. Then ν(N−uu′) = N+

uu′

because otherwise an N+
uu′-player is unmatched contradicting (u, ν, χ) is semistable. Thus ν(i) is in

N+
uu′ ∪N

−
uu′ hence a free player.

PROOF OF PROPOSITION 8 : Consider any piecewise linear Market/Game. Let K be any

finite collection of settled aspirations. Let u be any settled aspiration in U at which ui ∈ med(K)i

for a maximum number of players. We claim ui ∈ med(K)i for every i. Suppose not. Then the sets

B = {i ∈ N | vi < ui} and S = {i ∈ N | ui < vi} cannot both be empty. Note that players in B and

S are free players.

Define U ′ = {u′ ∈ U |vi ≤ u′i for i ∈ B, u′i ≤ vi for i ∈ S, and u′i = ui for i /∈ B ∪ S}. Clearly

U ′ is nonempty and closed. So there is a u∗ ∈ U ′ such that
∑
i∈B

u∗i ≤
∑
i∈B

u′i for every u′ ∈ U ′. If

u∗i = vi for some i ∈ B or u∗i = vi for some i ∈ S, then there would be an additional player i with

ui ∈ med(K)i. Contradiction. So B = {i ∈ N | u∗i > vi} and S = {i ∈ N | u∗i < vi}. By Proposition

7, there is a matching at u∗, say µ, that matches all the free players (among each other.)

Let n = m when k is odd and n = m+ 1 when k is even.

Let i be any player in S and j = µ(i). By Proposition 2, u′j < u∗j for every u′ ∈ U such that
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u′i > u∗i . Since at least n elements of K give a higher payoff to i than u∗, at least n elements of K

give a lower payoff to j than u∗. Hence j ∈ B. Thus S is matchable into B at u∗.

Let i be any player in B and j ∈ Di(u
∗). By Lemma 3, u′j > u∗j for any u′ ∈ U such that

u′i < u∗i . Since at least n elements of K give a lower payoff to i than u∗, at least n elements of K

give a higher payoff to j than u∗. Hence j ∈ S and DB(u∗) ⊂ S.

Thus (B, S) is a balanced-market at u∗. But then, by Lemma 2, there exists u∗∗ ∈ U ′ such that∑
i∈B

u∗∗i <
∑
i∈B

u∗i . Contradiction. This proves our claim and the Proposition 8 for any piecewise

linear Market/Game. Proposition 8 holds for any Market/Game by uniform approximation.

PROOF OF LEMMA 8 : Let (u, µ), (u′, µ′) be any two stable allocations. We claim µ ⊂ D(u′)

which completes the proof.

By Proposition 2, µ, µ′ both match N+
uu′ and N−uu′ to each other. Suppose the claim is not true.

Then there is a pair (i, j) ∈ (N+
uu′ , N

−
uu′) such that ij ∈ µ−D(u′). Let i1 = i and I = {i1, ..., in} , J =

{j1, ..., jn} be the player sets defined recursively by setting jk = µ(ik) and ik+1 = µ′(jk). Then

(in+1, jn+1) = (i1, j1).

Clearly I ⊂ N+
uu′ and J ⊂ N−uu′ (since µ(N+

uu′) = µ′(N+
uu′) = N−uu′ .) Then cikjk−1

− u′jk−1
≥ cikjk − u′jk

since ikjk−1 ∈ D(u′) and cikjk − ujk ≥ cikjk−1
− ujk−1

since ikjk ∈ D(u) for all k. So

u′jk−1
− ujk−1

≤ u′jk − ujk

for all k. But then u′j1 − uj1 = u′jn − ujn . Therefore i1j1 ∈ D(u′) (since i1j1 ∈ D(u), i1jn ∈ D(u′)).

Contradiction.

PROOF OF PROPOSITION 10 : Let u be a settled aspiration and u′ be any aspiration. Let

µ′ be any matching at u′ and

µ′+ =
{
ij ∈ µ′|i ∈ N+

uu′

}
.

By Lemma 3 DN−
uu′

(u′) ⊂ N+
uu′ . So the matching µ′0 = µ′ − µ′+ contains only players in N0

uu′ =

N − (N+
uu′ ∪N

−
uu′) = {i ∈ N |ui = u′i}. Using Lemma 4, let µ+ be a matching at u that matches N+

uu′

into N−uu′ . It is clear that

µ = µ′0 ∪ µ+

is a matching at u. We show below that there are at least as many active-unmatched players at

[u′, µ′] as there are at [u, µ].

Since DN−
uu′

(u′) ⊂ N+
uu′ ,

µ′(N−uu′) ⊂ N+
uu′ .
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Let A be the set of all players in N −N0
uu′ who are active-unmatched at [u, µ]. By definition of µ,

A ⊂ N−uu′ − µ(N+
uu′). Hence ∣∣N−uu′∣∣ ≥ ∣∣µ(N+

uu′)
∣∣+ |A| =

∣∣N+
uu′

∣∣+ |A| .

Let A0 be the set of N0
uu′-players who are active-unmatched at [u, µ] but matched at [u′, µ′]. Then

µ′(A0) ⊂ N+
uu′ . Therefore ∣∣µ′(N−uu′)∣∣ ≤ ∣∣N+

uu′

∣∣− ∣∣A0
∣∣ .

So
∣∣N−uu′∣∣− ∣∣µ′(N−uu′)∣∣ ≥ |A|+ |A0|. Recall that N−uu′-players are active at u′.

PROOF OF LEMMA 9 : Suppose to the contrary that there is an aspiration-allocation uµ in

D but not in Z. Then, there is an objection (T, u′) to uµ such that any counterobjection (Q, u) to

(T, u′) satisfies either Q ⊂ T or T ⊂ Q.

There can be no counterobjection (Q, u) to (T, u′) with Q ⊂ T : Otherwise ui > u′i > uµi for

i ∈ Q so (Q, u) is a justified objection to uµ, implying uµ /∈D. Contradiction.

Consider now any counterobjection (Q, u) to (T, u′) with T ⊂ Q. Then ui > u′i > uµi for i ∈ T .

Now let (u, µ′) be any allocation for the restricted Game (Q, f) and i be any player in T . If µ′(i) ∈ T,
then ((i, j), (ui, uj)) is a justified objection to uµ, implying uµ /∈ D. Contradiction. If µ′(i) /∈ T ,

then ((i, µ′(i)), (ui, uµ′(i))) is a counterobjection to (T, u′), but then it is not true that T ⊂ {i, µ′(i)}
since there are at least two players in T . Contradiction.

PROOF OF PROPOSITION 12 : (⇒) Let uµ be a super-weak-maximal aspiration-allocation

and suppose there is no balanced-market (B, S) at u such that B ⊂ N − µ(N). Suppose to the

contrary that there is a justified objection (T, u′) to uµ.

Let (u′, µ′) be an allocation for the restricted market (T, f). (Recall that Aµ(u) denotes the set

of active-unmatched players at [u, µ].) Let B = {i ∈ T |u′i < ui}. Then ui > u′i > uµi for all i ∈ B,
so B ⊂ Aµ(u).

We claim |T −B| ≤ |B| . Suppose not. Since (u′, µ′) is an allocation for (T, f), there is a pair

ij ∈ µ′ such that i, j ∈ T − B . So (u′i, u
′
j) ≥ (ui, uj). Since u is an aspiration, (u′i, u

′
j) = (ui, uj).

Therefore ij ∈ D(u) and (ui, uj) > (uµi , u
µ
j ), saying of uµ is not super-weak-maximal. End of claim.

Now let S = DB(u). Suppose S  T. Then, there is a pair ij in D(u) such that i ∈ B and

j ∈ S − T. So ((i, j), (ui, uj)) is a counterobjection to (T, u′). Contradiction. Therefore, S ⊂ T. By

super-weak-maximality of µ, S∩Aµ(u) = ∅. Hence S ⊂ T −B. So from the claim above |S| ≤ |B| .
Finally let ν be any active-minimal matching in DB(u). It is not possible that ν matches B

to S for otherwise (B, S) would be a balanced-market at u where B ⊂ Aµ(u). Therefore, since

|S| ≤ |B| as shown above, it must be that ν leaves a player i in B unmatched. Let (Bi, Si) be the

νi-market. Then (Bi, Si) ⊂ (B, S) and (Bi− i, Si) is a balanced-market at u where Bi− i ⊂ Aµ(u).

Contradiction.
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(⇐) Suppose µ is not super-weak-maximal at u. Then there is a pair ij ∈ D(u) where i, j ∈
Aµ(u). Then ((i, j), (ui, uj)) is a justified objection to uµ. Hence uµ /∈D.

Consider any piecewise linear Market/Game. Suppose there is a balanced-market (B, S) at u

where B ⊂ Aµ(u). By Lemma 2, let u′ = u+λd, where d is a feasible direction such that di > 0 for all

i ∈ S and di < 0 for all i ∈ B. It is clear that (B ∪S, u′) is a justified objection to uµ for sufficiently

small λ > 0. Hence uµ /∈D. This holds for for any Market/Game by uniform approximation.

Lemma 13 Let As, A
′
s be the solitary sets at any two solitary-minimal matchings µ, µ′ at the con-

secutive aspirations u, u′ respectively, where µ′ is a successor to µ, and A−s be the set of all As-players

who are active and unmatched at [u′, µ′]. If A′s is not equal to A−s , then

µ′ = µ,

D′ −D = b1b2 where b1, b2 are Buyers at u, and

A′s = As − b,

where b is the unmatched player in the cyclic µ′-sequence that contains b1, b2.

Proof. Suppose A′s is not equal to A−s . Then, by Lemma 12, A′s is contained in but not equal to

A−s . Let i be any player in A−s −A′s and (B∗i , S
∗
i ) be the µi-market in D. We will show that (Claim

1) D′−D = b1b2 where b1, b2 ∈ B∗i , (Claim 2) µ = µ′ and A′s = As− i (in particular, there is exactly

one player in A−s − A′s.)
Note i is nonsolitary in [u′, µ′] (since i is in A−s −A′s), so there is a µ′-cycle C = i0, i1, ..., in, j1, ..., jn

in D′ from i0 = i. Since D′ − D is at most a singleton, i0j1 or i0in is in D. Then j1 or in is in S∗i

(since i ∈ B∗i ). Say j1 ∈ S∗i . Let ν be an active-minimal matching in D′ that leaves j1 unmatched.

Claim 1 is true, because otherwise the demand set of every B∗i -player except possibly one (say

player k) in D′ would be in S∗i , implying (B∗i − k, S∗i ) is a bipartite submarket at u′ (since S∗i is

matchable into B∗i − k in D and so in D′), and contradicting active-minimality of ν by Lemma 1.

We prove Claim 2 in two steps :

Step (i) µ is active-minimal at u′ : Otherwise, since µ is active-minimal in D and b1b2 is the only

demand in D′ − D, any matching that is active-minimal at u′ would necessarily contain b1b2. But

consider the active-minimal matching ν constructed above and let νS∗i , µS∗i be the restriction of ν, µ

respectively to the pairs that have a player in S∗i . Note that the matching (ν − (νS∗i ∪ b1b2)) ∪ µS∗i
is active-minimal (because νS∗i ∪ b1b2 and µS∗i have equal cardinality and contain an equal number

of active players) but does not contain b1b2. Contradiction.

Step (ii) µ = µ′ and A′s = As − i : By using D 6= D′, A′ = A. Then, any µ-cycle in D is also

a µ-cycle in D′ because D ⊂ D′. Therefore, As contains the solitary set at [u′, µ]. By Lemma 5, i
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is nonsolitary in [u′, µ] since i is nonsolitary at [u′, µ′]. Therefore there is a µ-cycle C in D′ from i.

Note that b1b2 ∈ C (otherwise C is in D and so i /∈ As). Take any i′ ∈ As − i and let C ′ be any

µ-sequence from i′ in D′. Then, b1b2 /∈ C ′ (since C ∩ C ′ = ∅ by active-minimality of µ in D′) and

so C ′ is in D. Then, C ′ is cycle-free (otherwise µi
′
-market is not bipartite by Proposition 1 in D

and so i′ /∈ As by Proposition 4). Then, As − i is the solitary set at [u′, µ] and by Corollary 2 µ is

solitary-minimal at u′. So, µ′ = µ (recall Solitary-Minimal Matching Routine) and A′s = As − i.

Case 1 : b1 ∈ As, b2 ∈ (B∗ − As),

Case 2 : b1, b2 ∈ (B∗ − As).

Note that, in Case 2, both b1, b2 are matched in µ and there exists a player

b3 ∈ As

such that b1 and b2 are both µ′-reachable in D′ from only b3 in As. Now we are ready to state cases:

Case 1) If i is b1 or b2, say b1. Then, A′s = As − b1.
Case 2) Otherwise, say i is b3. Then, A′s = As − b3.
PROOF OF PROPOSITION 15 : Let As, A

′
s be the solitary sets at any two solitary-minimal

matchings µ, µ′ at the consecutive aspirations u, u′ respectively, where µ′ is a successor to µ. A′s ⊂ As

by Lemma 12.

Suppose A′s = As and (B∗, S∗)  (B∗′, S∗′). Let B = B∗ −B∗′ and S = S∗ − S∗′. If B is empty,

then DB∗(u
′) ⊂ DB∗′(u

′) = S∗′ since B∗ ⊂ B∗′. By using D ⊂ D′,

S∗ = DB∗(u) ⊂ DB∗(u
′) ⊂ DB∗(u

′) = S∗′

and hence S∗ ⊂ S∗′. Then, (B∗, S∗) ⊂ (B∗′, S∗′). Contradiction. Hence, B is nonempty.

No player in B∗−B demands an S-player in D′ and so in D since D ⊂ D′. Therefore, µ matches

S into B since µ(S∗) ⊂ B∗ and in particular |S| ≤ |B| . If |S| = |B|, then µ matches S to B

and S∗ − S into B∗ − B. Then, As ⊂ B∗ − B and so any µ-market from any player in As is in

(B∗ − B, S∗ − S) since DB∗−B(u) = S∗ − S and µ(S∗ − S) ⊂ B∗ − B. By Theorem 4 B is empty.

Contradiction. Thus, |S| < |B| .
Using A′s = As, it must be that |B∗′| − |S∗′| = |B∗| − |S∗|. Then, |S∗′ − S∗| < |B∗′ −B∗| since

|S| < |B|. The demand set of each player in B∗′ − B∗ is in S∗′ in D′. Then by using D ⊂ D′,
DB∗′−B∗(u) ⊂ S∗′. By using the fact that µ matches S∗ into B∗, there is a player i ∈ B∗′ − B∗

unmatched at [u, µ]. Player i is active-unmatched at [u, µ] since A′ ⊂ A. By Theorem 4, player i is

in a unitary seller-market at u′ and then in a seller-market at u by Lemma 11. Therefore i ∈ As at

[u, µ] by Lemma 6. By Theorem 4, i ∈ B∗. Contradiction. Thus, (B∗, S∗) ⊂ (B∗′, S∗′).

If A′s = As and S∗′ = S∗, then it must be that B∗′ = B∗ since otherwise |B∗′|−|S∗′| > |B∗|−|S∗|.
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