2,078 research outputs found

    Non-parametric hidden conditional random fields for action classification

    Get PDF
    Conditional Random Fields (CRF), a structured prediction method, combines probabilistic graphical models and discriminative classification techniques in order to predict class labels in sequence recognition problems. Its extension the Hidden Conditional Random Fields (HCRF) uses hidden state variables in order to capture intermediate structures. The number of hidden states in an HCRF must be specified a priori. This number is often not known in advance. A non-parametric extension to the HCRF, with the number of hidden states automatically inferred from data, is proposed here. This is a significant advantage over the classical HCRF since it avoids ad hoc model selection procedures. Further, the training and inference procedure is fully Bayesian eliminating the over fitting problem associated with frequentist methods. In particular, our construction is based on scale mixtures of Gaussians as priors over the HCRF parameters and makes use of Hierarchical Dirichlet Process (HDP) and Laplace distribution. The proposed inference procedure uses elliptical slice sampling, a Markov Chain Monte Carlo (MCMC) method, in order to sample optimal and sparse posterior HCRF parameters. The above technique is applied for classifying human actions that occur in depth image sequences – a challenging computer vision problem. Experiments with real world video datasets confirm the efficacy of our classification approach

    Two-Stream RNN/CNN for Action Recognition in 3D Videos

    Full text link
    The recognition of actions from video sequences has many applications in health monitoring, assisted living, surveillance, and smart homes. Despite advances in sensing, in particular related to 3D video, the methodologies to process the data are still subject to research. We demonstrate superior results by a system which combines recurrent neural networks with convolutional neural networks in a voting approach. The gated-recurrent-unit-based neural networks are particularly well-suited to distinguish actions based on long-term information from optical tracking data; the 3D-CNNs focus more on detailed, recent information from video data. The resulting features are merged in an SVM which then classifies the movement. In this architecture, our method improves recognition rates of state-of-the-art methods by 14% on standard data sets.Comment: Published in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS

    Two-Stage Human Activity Recognition Using 2D-ConvNet

    Get PDF
    There is huge requirement of continuous intelligent monitoring system for human activity recognition in various domains like public places, automated teller machines or healthcare sector. Increasing demand of automatic recognition of human activity in these sectors and need to reduce the cost involved in manual surveillance have motivated the research community towards deep learning techniques so that a smart monitoring system for recognition of human activities can be designed and developed. Because of low cost, high resolution and ease of availability of surveillance cameras, the authors developed a new two-stage intelligent framework for detection and recognition of human activity types inside the premises. This paper, introduces a novel framework to recognize single-limb and multi-limb human activities using a Convolution Neural Network. In the first phase single-limb and multi-limb activities are separated. Next, these separated single and multi-limb activities have been recognized using sequence-classification. For training and validation of our framework we have used the UTKinect-Action Dataset having 199 actions sequences performed by 10 users. We have achieved an overall accuracy of 97.88% in real-time recognition of the activity sequences

    Deep Affordance-grounded Sensorimotor Object Recognition

    Full text link
    It is well-established by cognitive neuroscience that human perception of objects constitutes a complex process, where object appearance information is combined with evidence about the so-called object "affordances", namely the types of actions that humans typically perform when interacting with them. This fact has recently motivated the "sensorimotor" approach to the challenging task of automatic object recognition, where both information sources are fused to improve robustness. In this work, the aforementioned paradigm is adopted, surpassing current limitations of sensorimotor object recognition research. Specifically, the deep learning paradigm is introduced to the problem for the first time, developing a number of novel neuro-biologically and neuro-physiologically inspired architectures that utilize state-of-the-art neural networks for fusing the available information sources in multiple ways. The proposed methods are evaluated using a large RGB-D corpus, which is specifically collected for the task of sensorimotor object recognition and is made publicly available. Experimental results demonstrate the utility of affordance information to object recognition, achieving an up to 29% relative error reduction by its inclusion.Comment: 9 pages, 7 figures, dataset link included, accepted to CVPR 201
    • …
    corecore