15,495 research outputs found

    Efficient Identification of Equivalences in Dynamic Graphs and Pedigree Structures

    Full text link
    We propose a new framework for designing test and query functions for complex structures that vary across a given parameter such as genetic marker position. The operations we are interested in include equality testing, set operations, isolating unique states, duplication counting, or finding equivalence classes under identifiability constraints. A motivating application is locating equivalence classes in identity-by-descent (IBD) graphs, graph structures in pedigree analysis that change over genetic marker location. The nodes of these graphs are unlabeled and identified only by their connecting edges, a constraint easily handled by our approach. The general framework introduced is powerful enough to build a range of testing functions for IBD graphs, dynamic populations, and other structures using a minimal set of operations. The theoretical and algorithmic properties of our approach are analyzed and proved. Computational results on several simulations demonstrate the effectiveness of our approach.Comment: Code for paper available at http://www.stat.washington.edu/~hoytak/code/hashreduc

    On invariant Schreier structures

    Full text link
    Schreier graphs, which possess both a graph structure and a Schreier structure (an edge-labeling by the generators of a group), are objects of fundamental importance in group theory and geometry. We study the Schreier structures with which unlabeled graphs may be endowed, with emphasis on structures which are invariant in some sense (e.g. conjugation-invariant, or sofic). We give proofs of a number of "folklore" results, such as that every regular graph of even degree admits a Schreier structure, and show that, under mild assumptions, the space of invariant Schreier structures over a given invariant graph structure is very large, in that it contains uncountably many ergodic measures. Our work is directly connected to the theory of invariant random subgroups, a field which has recently attracted a great deal of attention.Comment: 16 pages, added references and figure, to appear in L'Enseignement Mathematiqu

    Four Variations on Graded Posets

    Get PDF
    We explore the enumeration of some natural classes of graded posets, including all graded posets, (2+2)- and (3+1)-avoiding graded posets, (2+2)-avoiding graded posets, and (3+1)-avoiding graded posets. We obtain enumerative and structural theorems for all of them. Along the way, we discuss a situation when we can switch between enumeration of labeled and unlabeled objects with ease, generalize a result of Postnikov and Stanley from the theory of hyperplane arrangements, answer a question posed by Stanley, and see an old result of Klarner in a new light.Comment: 28 page

    {\Gamma}-species, quotients, and graph enumeration

    Full text link
    The theory of {\Gamma}-species is developed to allow species-theoretic study of quotient structures in a categorically rigorous fashion. This new approach is then applied to two graph-enumeration problems which were previously unsolved in the unlabeled case-bipartite blocks and general k-trees.Comment: 84 pages, 10 figures, dissertatio

    On the expected number of perfect matchings in cubic planar graphs

    Get PDF
    A well-known conjecture by Lov\'asz and Plummer from the 1970s asserted that a bridgeless cubic graph has exponentially many perfect matchings. It was solved in the affirmative by Esperet et al. (Adv. Math. 2011). On the other hand, Chudnovsky and Seymour (Combinatorica 2012) proved the conjecture in the special case of cubic planar graphs. In our work we consider random bridgeless cubic planar graphs with the uniform distribution on graphs with nn vertices. Under this model we show that the expected number of perfect matchings in labeled bridgeless cubic planar graphs is asymptotically cγnc\gamma^n, where c>0c>0 and γ∼1.14196\gamma \sim 1.14196 is an explicit algebraic number. We also compute the expected number of perfect matchings in (non necessarily bridgeless) cubic planar graphs and provide lower bounds for unlabeled graphs. Our starting point is a correspondence between counting perfect matchings in rooted cubic planar maps and the partition function of the Ising model in rooted triangulations.Comment: 19 pages, 4 figure
    • …
    corecore