527,708 research outputs found

    Counting is easy

    Get PDF

    The Complexity of Approximately Counting Stable Matchings

    Get PDF
    We investigate the complexity of approximately counting stable matchings in the kk-attribute model, where the preference lists are determined by dot products of "preference vectors" with "attribute vectors", or by Euclidean distances between "preference points" and "attribute points". Irving and Leather proved that counting the number of stable matchings in the general case is #P-complete. Counting the number of stable matchings is reducible to counting the number of downsets in a (related) partial order and is interreducible, in an approximation-preserving sense, to a class of problems that includes counting the number of independent sets in a bipartite graph (#BIS). It is conjectured that no FPRAS exists for this class of problems. We show this approximation-preserving interreducibilty remains even in the restricted kk-attribute setting when k≥3k \geq 3 (dot products) or k≥2k \geq 2 (Euclidean distances). Finally, we show it is easy to count the number of stable matchings in the 1-attribute dot-product setting.Comment: Fixed typos, small revisions for clarification, et

    Counting Euler Tours in Undirected Bounded Treewidth Graphs

    Get PDF
    We show that counting Euler tours in undirected bounded tree-width graphs is tractable even in parallel - by proving a #SAC1\#SAC^1 upper bound. This is in stark contrast to #P-completeness of the same problem in general graphs. Our main technical contribution is to show how (an instance of) dynamic programming on bounded \emph{clique-width} graphs can be performed efficiently in parallel. Thus we show that the sequential result of Espelage, Gurski and Wanke for efficiently computing Hamiltonian paths in bounded clique-width graphs can be adapted in the parallel setting to count the number of Hamiltonian paths which in turn is a tool for counting the number of Euler tours in bounded tree-width graphs. Our technique also yields parallel algorithms for counting longest paths and bipartite perfect matchings in bounded-clique width graphs. While establishing that counting Euler tours in bounded tree-width graphs can be computed by non-uniform monotone arithmetic circuits of polynomial degree (which characterize #SAC1\#SAC^1) is relatively easy, establishing a uniform #SAC1\#SAC^1 bound needs a careful use of polynomial interpolation.Comment: 17 pages; There was an error in the proof of the GapL upper bound claimed in the previous version which has been subsequently remove

    The Complexity of Counting Homomorphisms to Cactus Graphs Modulo 2

    Full text link
    A homomorphism from a graph G to a graph H is a function from V(G) to V(H) that preserves edges. Many combinatorial structures that arise in mathematics and computer science can be represented naturally as graph homomorphisms and as weighted sums of graph homomorphisms. In this paper, we study the complexity of counting homomorphisms modulo 2. The complexity of modular counting was introduced by Papadimitriou and Zachos and it has been pioneered by Valiant who famously introduced a problem for which counting modulo 7 is easy but counting modulo 2 is intractable. Modular counting provides a rich setting in which to study the structure of homomorphism problems. In this case, the structure of the graph H has a big influence on the complexity of the problem. Thus, our approach is graph-theoretic. We give a complete solution for the class of cactus graphs, which are connected graphs in which every edge belongs to at most one cycle. Cactus graphs arise in many applications such as the modelling of wireless sensor networks and the comparison of genomes. We show that, for some cactus graphs H, counting homomorphisms to H modulo 2 can be done in polynomial time. For every other fixed cactus graph H, the problem is complete for the complexity class parity-P which is a wide complexity class to which every problem in the polynomial hierarchy can be reduced (using randomised reductions). Determining which H lead to tractable problems can be done in polynomial time. Our result builds upon the work of Faben and Jerrum, who gave a dichotomy for the case in which H is a tree.Comment: minor change
    • …
    corecore