130 research outputs found

    Counting hypergraph matchings up to uniqueness threshold

    Get PDF
    We study the problem of approximately counting matchings in hypergraphs of bounded maximum degree and maximum size of hyperedges. With an activity parameter λ\lambda, each matching MM is assigned a weight λ∣M∣\lambda^{|M|}. The counting problem is formulated as computing a partition function that gives the sum of the weights of all matchings in a hypergraph. This problem unifies two extensively studied statistical physics models in approximate counting: the hardcore model (graph independent sets) and the monomer-dimer model (graph matchings). For this model, the critical activity λc=ddk(d−1)d+1\lambda_c= \frac{d^d}{k (d-1)^{d+1}} is the threshold for the uniqueness of Gibbs measures on the infinite (d+1)(d+1)-uniform (k+1)(k+1)-regular hypertree. Consider hypergraphs of maximum degree at most k+1k+1 and maximum size of hyperedges at most d+1d+1. We show that when λ<λc\lambda < \lambda_c, there is an FPTAS for computing the partition function; and when λ=λc\lambda = \lambda_c, there is a PTAS for computing the log-partition function. These algorithms are based on the decay of correlation (strong spatial mixing) property of Gibbs distributions. When λ>2λc\lambda > 2\lambda_c, there is no PRAS for the partition function or the log-partition function unless NP==RP. Towards obtaining a sharp transition of computational complexity of approximate counting, we study the local convergence from a sequence of finite hypergraphs to the infinite lattice with specified symmetry. We show a surprising connection between the local convergence and the reversibility of a natural random walk. This leads us to a barrier for the hardness result: The non-uniqueness of infinite Gibbs measure is not realizable by any finite gadgets

    FPTAS for Hardcore and Ising Models on Hypergraphs

    Get PDF
    Hardcore and Ising models are two most important families of two state spin systems in statistic physics. Partition function of spin systems is the center concept in statistic physics which connects microscopic particles and their interactions with their macroscopic and statistical properties of materials such as energy, entropy, ferromagnetism, etc. If each local interaction of the system involves only two particles, the system can be described by a graph. In this case, fully polynomial-time approximation scheme (FPTAS) for computing the partition function of both hardcore and anti-ferromagnetic Ising model was designed up to the uniqueness condition of the system. These result are the best possible since approximately computing the partition function beyond this threshold is NP-hard. In this paper, we generalize these results to general physics systems, where each local interaction may involves multiple particles. Such systems are described by hypergraphs. For hardcore model, we also provide FPTAS up to the uniqueness condition, and for anti-ferromagnetic Ising model, we obtain FPTAS where a slightly stronger condition holds

    FPTAS for Counting Monotone CNF

    Full text link
    A monotone CNF formula is a Boolean formula in conjunctive normal form where each variable appears positively. We design a deterministic fully polynomial-time approximation scheme (FPTAS) for counting the number of satisfying assignments for a given monotone CNF formula when each variable appears in at most 55 clauses. Equivalently, this is also an FPTAS for counting set covers where each set contains at most 55 elements. If we allow variables to appear in a maximum of 66 clauses (or sets to contain 66 elements), it is NP-hard to approximate it. Thus, this gives a complete understanding of the approximability of counting for monotone CNF formulas. It is also an important step towards a complete characterization of the approximability for all bounded degree Boolean #CSP problems. In addition, we study the hypergraph matching problem, which arises naturally towards a complete classification of bounded degree Boolean #CSP problems, and show an FPTAS for counting 3D matchings of hypergraphs with maximum degree 44. Our main technique is correlation decay, a powerful tool to design deterministic FPTAS for counting problems defined by local constraints among a number of variables. All previous uses of this design technique fall into two categories: each constraint involves at most two variables, such as independent set, coloring, and spin systems in general; or each variable appears in at most two constraints, such as matching, edge cover, and holant problem in general. The CNF problems studied here have more complicated structures than these problems and require new design and proof techniques. As it turns out, the technique we developed for the CNF problem also works for the hypergraph matching problem. We believe that it may also find applications in other CSP or more general counting problems.Comment: 24 pages, 2 figures. version 1=>2: minor edits, highlighted the picture of set cover/packing, and an implication of our previous result in 3D matchin

    The complexity of approximately counting in 2-spin systems on kk-uniform bounded-degree hypergraphs

    Full text link
    One of the most important recent developments in the complexity of approximate counting is the classification of the complexity of approximating the partition functions of antiferromagnetic 2-spin systems on bounded-degree graphs. This classification is based on a beautiful connection to the so-called uniqueness phase transition from statistical physics on the infinite Δ\Delta-regular tree. Our objective is to study the impact of this classification on unweighted 2-spin models on kk-uniform hypergraphs. As has already been indicated by Yin and Zhao, the connection between the uniqueness phase transition and the complexity of approximate counting breaks down in the hypergraph setting. Nevertheless, we show that for every non-trivial symmetric kk-ary Boolean function ff there exists a degree bound Δ0\Delta_0 so that for all Δ≥Δ0\Delta \geq \Delta_0 the following problem is NP-hard: given a kk-uniform hypergraph with maximum degree at most Δ\Delta, approximate the partition function of the hypergraph 2-spin model associated with ff. It is NP-hard to approximate this partition function even within an exponential factor. By contrast, if ff is a trivial symmetric Boolean function (e.g., any function ff that is excluded from our result), then the partition function of the corresponding hypergraph 2-spin model can be computed exactly in polynomial time

    The Ising Partition Function: Zeros and Deterministic Approximation

    Full text link
    We study the problem of approximating the partition function of the ferromagnetic Ising model in graphs and hypergraphs. Our first result is a deterministic approximation scheme (an FPTAS) for the partition function in bounded degree graphs that is valid over the entire range of parameters β\beta (the interaction) and λ\lambda (the external field), except for the case ∣λ∣=1\vert{\lambda}\vert=1 (the "zero-field" case). A randomized algorithm (FPRAS) for all graphs, and all β,λ\beta,\lambda, has long been known. Unlike most other deterministic approximation algorithms for problems in statistical physics and counting, our algorithm does not rely on the "decay of correlations" property. Rather, we exploit and extend machinery developed recently by Barvinok, and Patel and Regts, based on the location of the complex zeros of the partition function, which can be seen as an algorithmic realization of the classical Lee-Yang approach to phase transitions. Our approach extends to the more general setting of the Ising model on hypergraphs of bounded degree and edge size, where no previous algorithms (even randomized) were known for a wide range of parameters. In order to achieve this extension, we establish a tight version of the Lee-Yang theorem for the Ising model on hypergraphs, improving a classical result of Suzuki and Fisher.Comment: clarified presentation of combinatorial arguments, added new results on optimality of univariate Lee-Yang theorem

    Approximating the partition function of the ferromagnetic Potts model

    Full text link
    We provide evidence that it is computationally difficult to approximate the partition function of the ferromagnetic q-state Potts model when q>2. Specifically we show that the partition function is hard for the complexity class #RHPi_1 under approximation-preserving reducibility. Thus, it is as hard to approximate the partition function as it is to find approximate solutions to a wide range of counting problems, including that of determining the number of independent sets in a bipartite graph. Our proof exploits the first order phase transition of the "random cluster" model, which is a probability distribution on graphs that is closely related to the q-state Potts model.Comment: Minor correction
    • …
    corecore