4,518 research outputs found

    The String Landscape: On Formulas for Counting Vacua

    Get PDF
    We derive formulas for counting certain classes of vacua in the string/M theory landscape. We do so in the context of the moduli space of M-theory compactifications on singular manifolds with G2 holonomy. Particularly, we count the numbers of gauge theories with different gauge groups but equal numbers of U (1) factors which are dual to each other. The vacua correspond to various symmetry breaking patterns of grand unified theories. Counting these dual vacua is equivalent to counting the number of conjugacy classes of elements of finite order inside Lie groups. We also point out certain cases where the conventional expectation is that symmetry breaking patterns by Wilson lines and Higgs fields are the same, but we show they are in fact different

    Brewing moonshine for Mathieu

    Full text link
    We propose a moonshine for the sporadic Mathieu group M_12 that relates its conjugacy classes to various modular forms and Borcherds Kac-Moody Lie superalgebras.Comment: 21 pages; LaTeX; no figure

    Calculating conjugacy classes in Sylow p-subgroups of finite Chevalley groups of rank six and seven

    Get PDF
    Let G(q) be a finite Chevalley group, where q is a power of a good prime p, and let U(q) be a Sylow p-subgroup of G(q). Then a generalized version of a conjecture of Higman asserts that the number k(U(q)) of conjugacy classes in U(q) is given by a polynomial in q with integer coefficients. In an earlier paper, the first and the third authors developed an algorithm to calculate the values of k(U(q)). By implementing it into a computer program using GAP, they were able to calculate k(U(q)) for G of rank at most 5, thereby proving that for these cases k(U(q)) is given by a polynomial in q. In this paper we present some refinements and improvements of the algorithm that allow us to calculate the values of k(U(q)) for finite Chevalley groups of rank six and seven, except E_7. We observe that k(U(q)) is a polynomial, so that the generalized Higman conjecture holds for these groups. Moreover, if we write k(U(q)) as a polynomial in q-1, then the coefficients are non-negative. Under the assumption that k(U(q)) is a polynomial in q-1, we also give an explicit formula for the coefficients of k(U(q)) of degrees zero, one and two.Comment: 16 page
    corecore