53,787 research outputs found

    Spanning trees of 3-uniform hypergraphs

    Full text link
    Masbaum and Vaintrob's "Pfaffian matrix tree theorem" implies that counting spanning trees of a 3-uniform hypergraph (abbreviated to 3-graph) can be done in polynomial time for a class of "3-Pfaffian" 3-graphs, comparable to and related to the class of Pfaffian graphs. We prove a complexity result for recognizing a 3-Pfaffian 3-graph and describe two large classes of 3-Pfaffian 3-graphs -- one of these is given by a forbidden subgraph characterization analogous to Little's for bipartite Pfaffian graphs, and the other consists of a class of partial Steiner triple systems for which the property of being 3-Pfaffian can be reduced to the property of an associated graph being Pfaffian. We exhibit an infinite set of partial Steiner triple systems that are not 3-Pfaffian, none of which can be reduced to any other by deletion or contraction of triples. We also find some necessary or sufficient conditions for the existence of a spanning tree of a 3-graph (much more succinct than can be obtained by the currently fastest polynomial-time algorithm of Gabow and Stallmann for finding a spanning tree) and a superexponential lower bound on the number of spanning trees of a Steiner triple system.Comment: 34 pages, 9 figure

    Connectivity in bridge-addable graph classes: the McDiarmid-Steger-Welsh conjecture

    Get PDF
    A class of graphs is bridge-addable if given a graph G in the class, any graph obtained by adding an edge between two connected components of G is also in the class. We prove a conjecture of McDiarmid, Steger, and Welsh, that says that if is any bridge-addable class of graphs on n vertices, and is taken uniformly at random from , then is connected with probability at least , when n tends to infinity. This lower bound is asymptotically best possible since it is reached for forests. Our proof uses a “local double counting” strategy that may be of independent interest, and that enables us to compare the size of two sets of combinatorial objects by solving a related multivariate optimization problem. In our case, the optimization problem deals with partition functions of trees relative to a supermultiplicative functional.Postprint (author's final draft

    A Complete Grammar for Decomposing a Family of Graphs into 3-connected Components

    Full text link
    Tutte has described in the book "Connectivity in graphs" a canonical decomposition of any graph into 3-connected components. In this article we translate (using the language of symbolic combinatorics) Tutte's decomposition into a general grammar expressing any family of graphs (with some stability conditions) in terms of the 3-connected subfamily. A key ingredient we use is an extension of the so-called dissymmetry theorem, which yields negative signs in the grammar. As a main application we recover in a purely combinatorial way the analytic expression found by Gim\'enez and Noy for the series counting labelled planar graphs (such an expression is crucial to do asymptotic enumeration and to obtain limit laws of various parameters on random planar graphs). Besides the grammar, an important ingredient of our method is a recent bijective construction of planar maps by Bouttier, Di Francesco and Guitter.Comment: 39 page

    The Tensor Track, III

    Full text link
    We provide an informal up-to-date review of the tensor track approach to quantum gravity. In a long introduction we describe in simple terms the motivations for this approach. Then the many recent advances are summarized, with emphasis on some points (Gromov-Hausdorff limit, Loop vertex expansion, Osterwalder-Schrader positivity...) which, while important for the tensor track program, are not detailed in the usual quantum gravity literature. We list open questions in the conclusion and provide a rather extended bibliography.Comment: 53 pages, 6 figure
    • …
    corecore