468 research outputs found

    On the Complexity of the k-Level in Arrangements of Pseudoplanes

    Get PDF
    A classical open problem in combinatorial geometry is to obtain tight asymptotic bounds on the maximum number of k-level vertices in an arrangement of n hyperplanes in d dimensions (vertices with exactly k of the hyperplanes passing below them). This is a dual version of the k-set problem, which, in a primal setting, seeks bounds for the maximum number of k-sets determined by n points in d dimensions, where a k-set is a subset of size k that can be separated from its complement by a hyperplane. The k-set problem is still wide open even in the plane, with a substantial gap between the best known upper and lower bounds. The gap gets larger as the dimension grows. In three dimensions, the best known upper bound is O(nk^(3/2)). In its dual version, the problem can be generalized by replacing hyperplanes by other families of surfaces (or curves in the planes). Reasonably sharp bounds have been obtained for curves in the plane, but the known upper bounds are rather weak for more general surfaces, already in three dimensions, except for the case of triangles. The best known general bound, due to Chan is O(n^2.997), for families of surfaces that satisfy certain (fairly weak) properties. In this paper we consider the case of pseudoplanes in 3 dimensions (defined in detail in the introduction), and establish the upper bound O(nk^(5/3)) for the number of k-level vertices in an arrangement of n pseudoplanes. The bound is obtained by establishing suitable (and nontrivial) extensions of dual versions of classical tools that have been used in studying the primal k-set problem, such as the Lova'sz Lemma and the Crossing Lemma.Comment: 23 pages, 13 figure

    Output-Sensitive Tools for Range Searching in Higher Dimensions

    Full text link
    Let PP be a set of nn points in Rd{\mathbb R}^{d}. A point p∈Pp \in P is kk\emph{-shallow} if it lies in a halfspace which contains at most kk points of PP (including pp). We show that if all points of PP are kk-shallow, then PP can be partitioned into Θ(n/k)\Theta(n/k) subsets, so that any hyperplane crosses at most O((n/k)1βˆ’1/(dβˆ’1)log⁑2/(dβˆ’1)(n/k))O((n/k)^{1-1/(d-1)} \log^{2/(d-1)}(n/k)) subsets. Given such a partition, we can apply the standard construction of a spanning tree with small crossing number within each subset, to obtain a spanning tree for the point set PP, with crossing number O(n1βˆ’1/(dβˆ’1)k1/d(dβˆ’1)log⁑2/(dβˆ’1)(n/k))O(n^{1-1/(d-1)}k^{1/d(d-1)} \log^{2/(d-1)}(n/k)). This allows us to extend the construction of Har-Peled and Sharir \cite{hs11} to three and higher dimensions, to obtain, for any set of nn points in Rd{\mathbb R}^{d} (without the shallowness assumption), a spanning tree TT with {\em small relative crossing number}. That is, any hyperplane which contains w≀n/2w \leq n/2 points of PP on one side, crosses O(n1βˆ’1/(dβˆ’1)w1/d(dβˆ’1)log⁑2/(dβˆ’1)(n/w))O(n^{1-1/(d-1)}w^{1/d(d-1)} \log^{2/(d-1)}(n/w)) edges of TT. Using a similar mechanism, we also obtain a data structure for halfspace range counting, which uses O(nlog⁑log⁑n)O(n \log \log n) space (and somewhat higher preprocessing cost), and answers a query in time O(n1βˆ’1/(dβˆ’1)k1/d(dβˆ’1)(log⁑(n/k))O(1))O(n^{1-1/(d-1)}k^{1/d(d-1)} (\log (n/k))^{O(1)}), where kk is the output size

    Selection Lemmas for various geometric objects

    Full text link
    Selection lemmas are classical results in discrete geometry that have been well studied and have applications in many geometric problems like weak epsilon nets and slimming Delaunay triangulations. Selection lemma type results typically show that there exists a point that is contained in many objects that are induced (spanned) by an underlying point set. In the first selection lemma, we consider the set of all the objects induced (spanned) by a point set PP. This question has been widely explored for simplices in Rd\mathbb{R}^d, with tight bounds in R2\mathbb{R}^2. In our paper, we prove first selection lemma for other classes of geometric objects. We also consider the strong variant of this problem where we add the constraint that the piercing point comes from PP. We prove an exact result on the strong and the weak variant of the first selection lemma for axis-parallel rectangles, special subclasses of axis-parallel rectangles like quadrants and slabs, disks (for centrally symmetric point sets). We also show non-trivial bounds on the first selection lemma for axis-parallel boxes and hyperspheres in Rd\mathbb{R}^d. In the second selection lemma, we consider an arbitrary mm sized subset of the set of all objects induced by PP. We study this problem for axis-parallel rectangles and show that there exists an point in the plane that is contained in m324n4\frac{m^3}{24n^4} rectangles. This is an improvement over the previous bound by Smorodinsky and Sharir when mm is almost quadratic

    Dense point sets have sparse Delaunay triangulations

    Full text link
    The spread of a finite set of points is the ratio between the longest and shortest pairwise distances. We prove that the Delaunay triangulation of any set of n points in R^3 with spread D has complexity O(D^3). This bound is tight in the worst case for all D = O(sqrt{n}). In particular, the Delaunay triangulation of any dense point set has linear complexity. We also generalize this upper bound to regular triangulations of k-ply systems of balls, unions of several dense point sets, and uniform samples of smooth surfaces. On the other hand, for any n and D=O(n), we construct a regular triangulation of complexity Omega(nD) whose n vertices have spread D.Comment: 31 pages, 11 figures. Full version of SODA 2002 paper. Also available at http://www.cs.uiuc.edu/~jeffe/pubs/screw.htm
    • …
    corecore