364 research outputs found

    LIMEtree: Interactively Customisable Explanations Based on Local Surrogate Multi-output Regression Trees

    Get PDF
    Systems based on artificial intelligence and machine learning models should be transparent, in the sense of being capable of explaining their decisions to gain humans' approval and trust. While there are a number of explainability techniques that can be used to this end, many of them are only capable of outputting a single one-size-fits-all explanation that simply cannot address all of the explainees' diverse needs. In this work we introduce a model-agnostic and post-hoc local explainability technique for black-box predictions called LIMEtree, which employs surrogate multi-output regression trees. We validate our algorithm on a deep neural network trained for object detection in images and compare it against Local Interpretable Model-agnostic Explanations (LIME). Our method comes with local fidelity guarantees and can produce a range of diverse explanation types, including contrastive and counterfactual explanations praised in the literature. Some of these explanations can be interactively personalised to create bespoke, meaningful and actionable insights into the model's behaviour. While other methods may give an illusion of customisability by wrapping, otherwise static, explanations in an interactive interface, our explanations are truly interactive, in the sense of allowing the user to "interrogate" a black-box model. LIMEtree can therefore produce consistent explanations on which an interactive exploratory process can be built

    Unifying (Machine) Vision via Counterfactual World Modeling

    Full text link
    Leading approaches in machine vision employ different architectures for different tasks, trained on costly task-specific labeled datasets. This complexity has held back progress in areas, such as robotics, where robust task-general perception remains a bottleneck. In contrast, "foundation models" of natural language have shown how large pre-trained neural networks can provide zero-shot solutions to a broad spectrum of apparently distinct tasks. Here we introduce Counterfactual World Modeling (CWM), a framework for constructing a visual foundation model: a unified, unsupervised network that can be prompted to perform a wide variety of visual computations. CWM has two key components, which resolve the core issues that have hindered application of the foundation model concept to vision. The first is structured masking, a generalization of masked prediction methods that encourages a prediction model to capture the low-dimensional structure in visual data. The model thereby factors the key physical components of a scene and exposes an interface to them via small sets of visual tokens. This in turn enables CWM's second main idea -- counterfactual prompting -- the observation that many apparently distinct visual representations can be computed, in a zero-shot manner, by comparing the prediction model's output on real inputs versus slightly modified ("counterfactual") inputs. We show that CWM generates high-quality readouts on real-world images and videos for a diversity of tasks, including estimation of keypoints, optical flow, occlusions, object segments, and relative depth. Taken together, our results show that CWM is a promising path to unifying the manifold strands of machine vision in a conceptually simple foundation

    Asymmetric Actor Critic for Image-Based Robot Learning

    Full text link
    Deep reinforcement learning (RL) has proven a powerful technique in many sequential decision making domains. However, Robotics poses many challenges for RL, most notably training on a physical system can be expensive and dangerous, which has sparked significant interest in learning control policies using a physics simulator. While several recent works have shown promising results in transferring policies trained in simulation to the real world, they often do not fully utilize the advantage of working with a simulator. In this work, we exploit the full state observability in the simulator to train better policies which take as input only partial observations (RGBD images). We do this by employing an actor-critic training algorithm in which the critic is trained on full states while the actor (or policy) gets rendered images as input. We show experimentally on a range of simulated tasks that using these asymmetric inputs significantly improves performance. Finally, we combine this method with domain randomization and show real robot experiments for several tasks like picking, pushing, and moving a block. We achieve this simulation to real world transfer without training on any real world data.Comment: Videos of experiments can be found at http://www.goo.gl/b57WT

    Explaining Classifiers using Adversarial Perturbations on the Perceptual Ball

    Get PDF
    We present a simple regularization of adversarial perturbations based upon the perceptual loss. While the resulting perturbations remain imperceptible to the human eye, they differ from existing adversarial perturbations in that they are semi-sparse alterations that highlight objects and regions of interest while leaving the background unaltered. As a semantically meaningful adverse perturbations, it forms a bridge between counterfactual explanations and adversarial perturbations in the space of images. We evaluate our approach on several standard explainability benchmarks, namely, weak localization, insertion deletion, and the pointing game demonstrating that perceptually regularized counterfactuals are an effective explanation for image-based classifiers.Comment: CVPR 202

    On the Design, Implementation and Application of Novel Multi-disciplinary Techniques for explaining Artificial Intelligence Models

    Get PDF
    284 p.Artificial Intelligence is a non-stopping field of research that has experienced some incredible growth lastdecades. Some of the reasons for this apparently exponential growth are the improvements incomputational power, sensing capabilities and data storage which results in a huge increment on dataavailability. However, this growth has been mostly led by a performance-based mindset that has pushedmodels towards a black-box nature. The performance prowess of these methods along with the risingdemand for their implementation has triggered the birth of a new research field. Explainable ArtificialIntelligence. As any new field, XAI falls short in cohesiveness. Added the consequences of dealing withconcepts that are not from natural sciences (explanations) the tumultuous scene is palpable. This thesiscontributes to the field from two different perspectives. A theoretical one and a practical one. The formeris based on a profound literature review that resulted in two main contributions: 1) the proposition of anew definition for Explainable Artificial Intelligence and 2) the creation of a new taxonomy for the field.The latter is composed of two XAI frameworks that accommodate in some of the raging gaps found field,namely: 1) XAI framework for Echo State Networks and 2) XAI framework for the generation ofcounterfactual. The first accounts for the gap concerning Randomized neural networks since they havenever been considered within the field of XAI. Unfortunately, choosing the right parameters to initializethese reservoirs falls a bit on the side of luck and past experience of the scientist and less on that of soundreasoning. The current approach for assessing whether a reservoir is suited for a particular task is toobserve if it yields accurate results, either by handcrafting the values of the reservoir parameters or byautomating their configuration via an external optimizer. All in all, this poses tough questions to addresswhen developing an ESN for a certain application, since knowing whether the created structure is optimalfor the problem at hand is not possible without actually training it. However, some of the main concernsfor not pursuing their application is related to the mistrust generated by their black-box" nature. Thesecond presents a new paradigm to treat counterfactual generation. Among the alternatives to reach auniversal understanding of model explanations, counterfactual examples is arguably the one that bestconforms to human understanding principles when faced with unknown phenomena. Indeed, discerningwhat would happen should the initial conditions differ in a plausible fashion is a mechanism oftenadopted by human when attempting at understanding any unknown. The search for counterfactualsproposed in this thesis is governed by three different objectives. Opposed to the classical approach inwhich counterfactuals are just generated following a minimum distance approach of some type, thisframework allows for an in-depth analysis of a target model by means of counterfactuals responding to:Adversarial Power, Plausibility and Change Intensity
    • …
    corecore