2,980 research outputs found

    Spatiotemporal Sparse Bayesian Learning with Applications to Compressed Sensing of Multichannel Physiological Signals

    Full text link
    Energy consumption is an important issue in continuous wireless telemonitoring of physiological signals. Compressed sensing (CS) is a promising framework to address it, due to its energy-efficient data compression procedure. However, most CS algorithms have difficulty in data recovery due to non-sparsity characteristic of many physiological signals. Block sparse Bayesian learning (BSBL) is an effective approach to recover such signals with satisfactory recovery quality. However, it is time-consuming in recovering multichannel signals, since its computational load almost linearly increases with the number of channels. This work proposes a spatiotemporal sparse Bayesian learning algorithm to recover multichannel signals simultaneously. It not only exploits temporal correlation within each channel signal, but also exploits inter-channel correlation among different channel signals. Furthermore, its computational load is not significantly affected by the number of channels. The proposed algorithm was applied to brain computer interface (BCI) and EEG-based driver's drowsiness estimation. Results showed that the algorithm had both better recovery performance and much higher speed than BSBL. Particularly, the proposed algorithm ensured that the BCI classification and the drowsiness estimation had little degradation even when data were compressed by 80%, making it very suitable for continuous wireless telemonitoring of multichannel signals.Comment: Codes are available at: https://sites.google.com/site/researchbyzhang/stsb

    Shape Parameter Estimation

    Get PDF
    Performance of machine learning approaches depends strongly on the choice of misfit penalty, and correct choice of penalty parameters, such as the threshold of the Huber function. These parameters are typically chosen using expert knowledge, cross-validation, or black-box optimization, which are time consuming for large-scale applications. We present a principled, data-driven approach to simultaneously learn the model pa- rameters and the misfit penalty parameters. We discuss theoretical properties of these joint inference problems, and develop algorithms for their solution. We show synthetic examples of automatic parameter tuning for piecewise linear-quadratic (PLQ) penalties, and use the approach to develop a self-tuning robust PCA formulation for background separation.Comment: 20 pages, 10 figure

    Extension of SBL Algorithms for the Recovery of Block Sparse Signals with Intra-Block Correlation

    Full text link
    We examine the recovery of block sparse signals and extend the framework in two important directions; one by exploiting signals' intra-block correlation and the other by generalizing signals' block structure. We propose two families of algorithms based on the framework of block sparse Bayesian learning (BSBL). One family, directly derived from the BSBL framework, requires knowledge of the block structure. Another family, derived from an expanded BSBL framework, is based on a weaker assumption on the block structure, and can be used when the block structure is completely unknown. Using these algorithms we show that exploiting intra-block correlation is very helpful in improving recovery performance. These algorithms also shed light on how to modify existing algorithms or design new ones to exploit such correlation and improve performance.Comment: Matlab codes can be downloaded at: https://sites.google.com/site/researchbyzhang/bsbl, or http://dsp.ucsd.edu/~zhilin/BSBL.htm

    Bayesian Persuasion for Algorithmic Recourse

    Full text link
    When subjected to automated decision-making, decision subjects may strategically modify their observable features in ways they believe will maximize their chances of receiving a favorable decision. In many practical situations, the underlying assessment rule is deliberately kept secret to avoid gaming and maintain competitive advantage. The resulting opacity forces the decision subjects to rely on incomplete information when making strategic feature modifications. We capture such settings as a game of Bayesian persuasion, in which the decision maker offers a form of recourse to the decision subject by providing them with an action recommendation (or signal) to incentivize them to modify their features in desirable ways. We show that when using persuasion, the decision maker and decision subject are never worse off in expectation, while the decision maker can be significantly better off. While the decision maker's problem of finding the optimal Bayesian incentive-compatible (BIC) signaling policy takes the form of optimization over infinitely-many variables, we show that this optimization can be cast as a linear program over finitely-many regions of the space of possible assessment rules. While this reformulation simplifies the problem dramatically, solving the linear program requires reasoning about exponentially-many variables, even in relatively simple cases. Motivated by this observation, we provide a polynomial-time approximation scheme that recovers a near-optimal signaling policy. Finally, our numerical simulations on semi-synthetic data empirically demonstrate the benefits of using persuasion in the algorithmic recourse setting.Comment: In the thirty-sixth Conference on Neural Information Processing Systems (NeurIPS 2022
    • …
    corecore