336,877 research outputs found

    Cost-effective HPC clustering for computer vision applications

    Get PDF
    We will present a cost-effective and flexible realization of high performance computing (HPC) clustering and its potential in solving computationally intensive problems in computer vision. The featured software foundation to support the parallel programming is the GNU parallel Knoppix package with message passing interface (MPI) based Octave, Python and C interface capabilities. The implementation is especially of interest in applications where the main objective is to reuse the existing hardware infrastructure and to maintain the overall budget cost. We will present the benchmark results and compare and contrast the performances of Octave and MATLAB

    A Distributed Parallel Processing Environment Based upon the Linda Paradigm: A Research Prospectus

    Get PDF
    As the computing capacity of the uniprocessor is being taxed, and the high cost of parallel and super-computers is still prevalent, alternative methods of achieving parallel performance at an economical price are desired. This proposed research effort offers one such alternative, focusing on the idle CPU cycles existing on local area networks. With the increase in the computing power of workstations and their declining costs, one can effectively transform the unused computing power attached to a local area network into a parallel processing environment. Effectively exploiting such an environment, however, requires a specification and operational framework that is portable, easy to use, and efficient. The environment is constructed around the Linda parallel programming paradigm which provides an effective parallel computational framework

    High-speed detection of emergent market clustering via an unsupervised parallel genetic algorithm

    Full text link
    We implement a master-slave parallel genetic algorithm (PGA) with a bespoke log-likelihood fitness function to identify emergent clusters within price evolutions. We use graphics processing units (GPUs) to implement a PGA and visualise the results using disjoint minimal spanning trees (MSTs). We demonstrate that our GPU PGA, implemented on a commercially available general purpose GPU, is able to recover stock clusters in sub-second speed, based on a subset of stocks in the South African market. This represents a pragmatic choice for low-cost, scalable parallel computing and is significantly faster than a prototype serial implementation in an optimised C-based fourth-generation programming language, although the results are not directly comparable due to compiler differences. Combined with fast online intraday correlation matrix estimation from high frequency data for cluster identification, the proposed implementation offers cost-effective, near-real-time risk assessment for financial practitioners.Comment: 10 pages, 5 figures, 4 tables, More thorough discussion of implementatio

    Parallel biocomputing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>With the advent of high throughput genomics and high-resolution imaging techniques, there is a growing necessity in biology and medicine for parallel computing, and with the low cost of computing, it is now cost-effective for even small labs or individuals to build their own personal computation cluster.</p> <p>Methods</p> <p>Here we briefly describe how to use commodity hardware to build a low-cost, high-performance compute cluster, and provide an in-depth example and sample code for parallel execution of R jobs using MOSIX, a mature extension of the Linux kernel for parallel computing. A similar process can be used with other cluster platform software.</p> <p>Results</p> <p>As a statistical genetics example, we use our cluster to run a simulated eQTL experiment. Because eQTL is computationally intensive, and is conceptually easy to parallelize, like many statistics/genetics applications, parallel execution with MOSIX gives a linear speedup in analysis time with little additional effort.</p> <p>Conclusions</p> <p>We have used MOSIX to run a wide variety of software programs in parallel with good results. The limitations and benefits of using MOSIX are discussed and compared to other platforms.</p

    An Analysis for Evaluating the Cost/Profit Effectiveness of Parallel Systems

    Get PDF
    A new domain of commercial applications demands the development of inexpensive parallel computing platforms to lower the cost of operations and increase the business profit. The calculation of returns on an IT investment is now important to justify the decision of upgrading or replacing parallel systems. This thesis presents a framework of the performance and economic factors that are considered when evaluating a parallel system. We introduce a metric called the cost/profit effective metric, which measures the effectiveness of a parallel system in terms of performance, cost and profit. This metric describes the profit obtained from the performance of three different domains for scaling: speed-up, throughput and/or scale-up. Cost is measured by the actual costs of a parallel system. We present two cases of study to demonstrate the application of this metric and analyze the results to support the evaluation of the parallel system on each case
    • ā€¦
    corecore