10,003 research outputs found

    An Energy-driven Network Function Virtualization for Multi-domain Software Defined Networks

    Full text link
    Network Functions Virtualization (NFV) in Software Defined Networks (SDN) emerged as a new technology for creating virtual instances for smooth execution of multiple applications. Their amalgamation provides flexible and programmable platforms to utilize the network resources for providing Quality of Service (QoS) to various applications. In SDN-enabled NFV setups, the underlying network services can be viewed as a series of virtual network functions (VNFs) and their optimal deployment on physical/virtual nodes is considered a challenging task to perform. However, SDNs have evolved from single-domain to multi-domain setups in the recent era. Thus, the complexity of the underlying VNF deployment problem in multi-domain setups has increased manifold. Moreover, the energy utilization aspect is relatively unexplored with respect to an optimal mapping of VNFs across multiple SDN domains. Hence, in this work, the VNF deployment problem in multi-domain SDN setup has been addressed with a primary emphasis on reducing the overall energy consumption for deploying the maximum number of VNFs with guaranteed QoS. The problem in hand is initially formulated as a "Multi-objective Optimization Problem" based on Integer Linear Programming (ILP) to obtain an optimal solution. However, the formulated ILP becomes complex to solve with an increasing number of decision variables and constraints with an increase in the size of the network. Thus, we leverage the benefits of the popular evolutionary optimization algorithms to solve the problem under consideration. In order to deduce the most appropriate evolutionary optimization algorithm to solve the considered problem, it is subjected to different variants of evolutionary algorithms on the widely used MOEA framework (an open source java framework based on multi-objective evolutionary algorithms).Comment: Accepted for publication in IEEE INFOCOM 2019 Workshop on Intelligent Cloud Computing and Networking (ICCN 2019

    Feasibility, Architecture and Cost Considerations of Using TVWS for Rural Internet Access in 5G

    Get PDF
    The cellular technology is mostly an urban technology that has been unable to serve rural areas well. This is because the traditional cellular models are not economical for areas with low user density and lesser revenues. In 5G cellular networks, the coverage dilemma is likely to remain the same, thus widening the rural-urban digital divide further. It is about time to identify the root cause that has hindered the rural technology growth and analyse the possible options in 5G architecture to address this issue. We advocate that it can only be accomplished in two phases by sequentially addressing economic viability followed by performance progression. We deliberate how various works in literature focus on the later stage of this ‘two-phase’ problem and are not feasible to implement in the first place. We propose the concept of TV band white space (TVWS) dovetailed with 5G infrastructure for rural coverage and show that it can yield cost-effectiveness from a service provider’s perspective

    An Algorithm for Network and Data-aware Placement of Multi-Tier Applications in Cloud Data Centers

    Full text link
    Today's Cloud applications are dominated by composite applications comprising multiple computing and data components with strong communication correlations among them. Although Cloud providers are deploying large number of computing and storage devices to address the ever increasing demand for computing and storage resources, network resource demands are emerging as one of the key areas of performance bottleneck. This paper addresses network-aware placement of virtual components (computing and data) of multi-tier applications in data centers and formally defines the placement as an optimization problem. The simultaneous placement of Virtual Machines and data blocks aims at reducing the network overhead of the data center network infrastructure. A greedy heuristic is proposed for the on-demand application components placement that localizes network traffic in the data center interconnect. Such optimization helps reducing communication overhead in upper layer network switches that will eventually reduce the overall traffic volume across the data center. This, in turn, will help reducing packet transmission delay, increasing network performance, and minimizing the energy consumption of network components. Experimental results demonstrate performance superiority of the proposed algorithm over other approaches where it outperforms the state-of-the-art network-aware application placement algorithm across all performance metrics by reducing the average network cost up to 67% and network usage at core switches up to 84%, as well as increasing the average number of application deployments up to 18%.Comment: Submitted for publication consideration for the Journal of Network and Computer Applications (JNCA). Total page: 28. Number of figures: 15 figure

    CyberGuarder: a virtualization security assurance architecture for green cloud computing

    Get PDF
    Cloud Computing, Green Computing, Virtualization, Virtual Security Appliance, Security Isolation
    • 

    corecore