5,626 research outputs found

    Inter-individual variation of the human epigenome & applications

    Get PDF

    osl-dynamics, a toolbox for modeling fast dynamic brain activity

    Get PDF
    Neural activity contains rich spatiotemporal structure that corresponds to cognition. This includes oscillatory bursting and dynamic activity that span across networks of brain regions, all of which can occur on timescales of tens of milliseconds. While these processes can be accessed through brain recordings and imaging, modeling them presents methodological challenges due to their fast and transient nature. Furthermore, the exact timing and duration of interesting cognitive events are often a priori unknown. Here, we present the OHBA Software Library Dynamics Toolbox (osl-dynamics), a Python-based package that can identify and describe recurrent dynamics in functional neuroimaging data on timescales as fast as tens of milliseconds. At its core are machine learning generative models that are able to adapt to the data and learn the timing, as well as the spatial and spectral characteristics, of brain activity with few assumptions. osl-dynamics incorporates state-of-the-art approaches that can be, and have been, used to elucidate brain dynamics in a wide range of data types, including magneto/electroencephalography, functional magnetic resonance imaging, invasive local field potential recordings, and electrocorticography. It also provides novel summary measures of brain dynamics that can be used to inform our understanding of cognition, behavior, and disease. We hope osl-dynamics will further our understanding of brain function, through its ability to enhance the modeling of fast dynamic processes

    UMSL Bulletin 2023-2024

    Get PDF
    The 2023-2024 Bulletin and Course Catalog for the University of Missouri St. Louis.https://irl.umsl.edu/bulletin/1088/thumbnail.jp

    Multidisciplinary perspectives on Artificial Intelligence and the law

    Get PDF
    This open access book presents an interdisciplinary, multi-authored, edited collection of chapters on Artificial Intelligence (‘AI’) and the Law. AI technology has come to play a central role in the modern data economy. Through a combination of increased computing power, the growing availability of data and the advancement of algorithms, AI has now become an umbrella term for some of the most transformational technological breakthroughs of this age. The importance of AI stems from both the opportunities that it offers and the challenges that it entails. While AI applications hold the promise of economic growth and efficiency gains, they also create significant risks and uncertainty. The potential and perils of AI have thus come to dominate modern discussions of technology and ethics – and although AI was initially allowed to largely develop without guidelines or rules, few would deny that the law is set to play a fundamental role in shaping the future of AI. As the debate over AI is far from over, the need for rigorous analysis has never been greater. This book thus brings together contributors from different fields and backgrounds to explore how the law might provide answers to some of the most pressing questions raised by AI. An outcome of the Católica Research Centre for the Future of Law and its interdisciplinary working group on Law and Artificial Intelligence, it includes contributions by leading scholars in the fields of technology, ethics and the law.info:eu-repo/semantics/publishedVersio

    Backpropagation Beyond the Gradient

    Get PDF
    Automatic differentiation is a key enabler of deep learning: previously, practitioners were limited to models for which they could manually compute derivatives. Now, they can create sophisticated models with almost no restrictions and train them using first-order, i. e. gradient, information. Popular libraries like PyTorch and TensorFlow compute this gradient efficiently, automatically, and conveniently with a single line of code. Under the hood, reverse-mode automatic differentiation, or gradient backpropagation, powers the gradient computation in these libraries. Their entire design centers around gradient backpropagation. These frameworks are specialized around one specific task—computing the average gradient in a mini-batch. This specialization often complicates the extraction of other information like higher-order statistical moments of the gradient, or higher-order derivatives like the Hessian. It limits practitioners and researchers to methods that rely on the gradient. Arguably, this hampers the field from exploring the potential of higher-order information and there is evidence that focusing solely on the gradient has not lead to significant recent advances in deep learning optimization. To advance algorithmic research and inspire novel ideas, information beyond the batch-averaged gradient must be made available at the same level of computational efficiency, automation, and convenience. This thesis presents approaches to simplify experimentation with rich information beyond the gradient by making it more readily accessible. We present an implementation of these ideas as an extension to the backpropagation procedure in PyTorch. Using this newly accessible information, we demonstrate possible use cases by (i) showing how it can inform our understanding of neural network training by building a diagnostic tool, and (ii) enabling novel methods to efficiently compute and approximate curvature information. First, we extend gradient backpropagation for sequential feedforward models to Hessian backpropagation which enables computing approximate per-layer curvature. This perspective unifies recently proposed block- diagonal curvature approximations. Like gradient backpropagation, the computation of these second-order derivatives is modular, and therefore simple to automate and extend to new operations. Based on the insight that rich information beyond the gradient can be computed efficiently and at the same time, we extend the backpropagation in PyTorch with the BackPACK library. It provides efficient and convenient access to statistical moments of the gradient and approximate curvature information, often at a small overhead compared to computing just the gradient. Next, we showcase the utility of such information to better understand neural network training. We build the Cockpit library that visualizes what is happening inside the model during training through various instruments that rely on BackPACK’s statistics. We show how Cockpit provides a meaningful statistical summary report to the deep learning engineer to identify bugs in their machine learning pipeline, guide hyperparameter tuning, and study deep learning phenomena. Finally, we use BackPACK’s extended automatic differentiation functionality to develop ViViT, an approach to efficiently compute curvature information, in particular curvature noise. It uses the low-rank structure of the generalized Gauss-Newton approximation to the Hessian and addresses shortcomings in existing curvature approximations. Through monitoring curvature noise, we demonstrate how ViViT’s information helps in understanding challenges to make second-order optimization methods work in practice. This work develops new tools to experiment more easily with higher-order information in complex deep learning models. These tools have impacted works on Bayesian applications with Laplace approximations, out-of-distribution generalization, differential privacy, and the design of automatic differentia- tion systems. They constitute one important step towards developing and establishing more efficient deep learning algorithms

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    UMSL Bulletin 2022-2023

    Get PDF
    The 2022-2023 Bulletin and Course Catalog for the University of Missouri St. Louis.https://irl.umsl.edu/bulletin/1087/thumbnail.jp

    UNPUBLISHING THE NEWS: AN ASSESSMENT OF U.S. PUBLIC OPINION, NEWSROOM ACCOUNTABILITY, AND JOURNALISTS’ AUTHORITY AS “THE FIRST DRAFT OF HISTORY”

    Get PDF
    Unpublishing, or the manipulation, deindexing, or removal of published content on a news organization’s website, is a hotly debated issue in the news industry that disrupts fundamental beliefs about the nature of news and the roles of journalists. This dissertation’s premise is that unpublishing as a phenomenon challenges the authority of journalism as “the first draft of history,” questions the assumed relevance of traditional norms, and creates an opportunity to reconsider how news organizations demonstrate their accountability to the public. The study identifies public opinions related to unpublishing practices and approval of related journalistic norms through a public opinion survey of 1,350 U.S. adults. In tandem, a qualitative analysis of 62 editorial policies related to unpublishing offers the first inventory and assessment of emerging journalistic practices and the normative values journalists demonstrate through them. These contributions are valuable to both the academy and the news industry, as they identify a path forward for future research and provide desired guidance to U.S. news organizations. Findings suggest that in response to the unpublishing phenomenon, American journalists defend their professionalism primarily through the traditional professional paradigm of accuracy, invoking it to legitimize new guidelines whether those policies permitted or denounced unpublishing as a newsroom practice. Findings also show newsrooms are pledging increased levels of accountability to their communities and society at large, but how they might demonstrate that accountability more tactically was absent from policy discourse. In addition, both American adults and news organizations place a high value on the accuracy of previously published news content, yet the groups’ temporal conceptions of accuracy must be reconciled. Ultimately, the unpublishing phenomenon presents an opportunity for journalists to redefine their notions of accountability to their communities. Based on these findings, the study concludes with a call for American news organizations to abandon claims as the “first draft of history” in the digital era and assume the role of information custodians, proactively establishing and managing the lifecycle of content.Doctor of Philosoph

    Evaluating the Potential of Disaggregated Memory Systems for HPC applications

    Full text link
    Disaggregated memory is a promising approach that addresses the limitations of traditional memory architectures by enabling memory to be decoupled from compute nodes and shared across a data center. Cloud platforms have deployed such systems to improve overall system memory utilization, but performance can vary across workloads. High-performance computing (HPC) is crucial in scientific and engineering applications, where HPC machines also face the issue of underutilized memory. As a result, improving system memory utilization while understanding workload performance is essential for HPC operators. Therefore, learning the potential of a disaggregated memory system before deployment is a critical step. This paper proposes a methodology for exploring the design space of a disaggregated memory system. It incorporates key metrics that affect performance on disaggregated memory systems: memory capacity, local and remote memory access ratio, injection bandwidth, and bisection bandwidth, providing an intuitive approach to guide machine configurations based on technology trends and workload characteristics. We apply our methodology to analyze thirteen diverse workloads, including AI training, data analysis, genomics, protein, fusion, atomic nuclei, and traditional HPC bookends. Our methodology demonstrates the ability to comprehend the potential and pitfalls of a disaggregated memory system and provides motivation for machine configurations. Our results show that eleven of our thirteen applications can leverage injection bandwidth disaggregated memory without affecting performance, while one pays a rack bisection bandwidth penalty and two pay the system-wide bisection bandwidth penalty. In addition, we also show that intra-rack memory disaggregation would meet the application's memory requirement and provide enough remote memory bandwidth.Comment: The submission builds on the following conference paper: N. Ding, S. Williams, H.A. Nam, et al. Methodology for Evaluating the Potential of Disaggregated Memory Systems,2nd International Workshop on RESource DISaggregation in High-Performance Computing (RESDIS), November 18, 2022. It is now submitted to the CCPE journal for revie

    Applications of No-Collision Transportation Maps in Manifold Learning

    Full text link
    In this work, we investigate applications of no-collision transportation maps introduced in [Nurbekyan et. al., 2020] in manifold learning for image data. Recently, there has been a surge in applying transportation-based distances and features for data representing motion-like or deformation-like phenomena. Indeed, comparing intensities at fixed locations often does not reveal the data structure. No-collision maps and distances developed in [Nurbekyan et. al., 2020] are sensitive to geometric features similar to optimal transportation (OT) maps but much cheaper to compute due to the absence of optimization. In this work, we prove that no-collision distances provide an isometry between translations (respectively dilations) of a single probability measure and the translation (respectively dilation) vectors equipped with a Euclidean distance. Furthermore, we prove that no-collision transportation maps, as well as OT and linearized OT maps, do not in general provide an isometry for rotations. The numerical experiments confirm our theoretical findings and show that no-collision distances achieve similar or better performance on several manifold learning tasks compared to other OT and Euclidean-based methods at a fraction of a computational cost
    corecore