634 research outputs found

    Workflow Scheduling Techniques and Algorithms in IaaS Cloud: A Survey

    Get PDF
    In the modern era, workflows are adopted as a powerful and attractive paradigm for expressing/solving a variety of applications like scientific, data intensive computing, and big data applications such as MapReduce and Hadoop. These complex applications are described using high-level representations in workflow methods. With the emerging model of cloud computing technology, scheduling in the cloud becomes the important research topic. Consequently, workflow scheduling problem has been studied extensively over the past few years, from homogeneous clusters, grids to the most recent paradigm, cloud computing. The challenges that need to be addressed lies in task-resource mapping, QoS requirements, resource provisioning, performance fluctuation, failure handling, resource scheduling, and data storage. This work focuses on the complete study of the resource provisioning and scheduling algorithms in cloud environment focusing on Infrastructure as a service (IaaS). We provided a comprehensive understanding of existing scheduling techniques and provided an insight into research challenges that will be a possible future direction to the researchers

    Comparison of the Execution Step Strategies on Scheduling Data-intensive Workflows on IaaS Cloud Platforms

    Get PDF
    The IaaS platforms of the Cloud hold promise for executing parallel applications, particularly data-intensive scientific workflows. An important challenge for users of these platforms executing scientific workflows is to strike the right trade-off between the execution time of the scientific workflow and the cost of using the platform. In a previous article, we proposed an efficient approach that assists the user in finding this compromise. This approach requires an algorithm aimed at minimizing the execution time of the workflow once the platform configuration is set. In this article, we compare two different strategies for executing a workflow after its offline scheduling using an algorithm. The algorithm that we proposed in the previous study has outperform the HEFT algorithm. The first strategy allows some ready tasks to execute earlier than other higher-priority tasks that are ready later due to data transfer times. This strategy is justified by the fact that although our scheduling algorithm attempts to minimize data transfers between tasks running on different virtual machines, this algorithm does not include data transfer times in the planned execution dates for the various tasks of the workflow. The second strategy strictly adheres to the predetermined order among tasks scheduled on the same virtual machine. The results of our evaluations show that the best execution strategy depends on the characteristics of the workflow. For each evaluated workflow, our results demonstrate that our scheduling algorithm combined with the best execution strategy surpasses HEFT. The choice of the best strategy must be determined experimentally following realistic simulations, such as the ones we conduct here using the WRENCH framework, before conducting simulations to find the best compromise between cost and execution time of a workflow on an IaaS platform.

    Budget-aware scheduling algorithm for scientific workflow applications across multiple clouds. A Mathematical Optimization-Based Approach

    Get PDF
    Scientific workflows have become a prevailing means of achieving significant scientific advances at an ever-increasing rate. Scheduling mechanisms and approaches are vital to automating these large-scale scientific workflows efficiently. On the other hand, with the advent of cloud computing and its easier availability and lower cost of use, more attention has been paid to the execution and scheduling of scientific workflows in this new paradigm environment. For scheduling large-scale workflows, a multi-cloud environment will typically have a more significant advantage in various computing resources than a single cloud provider. Also, the scheduling makespan and cost can be reduced if the computing resources are used optimally in a multi-cloud environment. Accordingly, this thesis addressed the problem of scientific workflow scheduling in the multi-cloud environment under budget constraints to minimize associated makespan. Furthermore, this study tries to minimize costs, including fees for running VMs and data transfer, minimize the data transfer time, and fulfill budget and resource constraints in the multi-clouds scenario. To this end, we proposed Mixed-Integer Linear Programming (MILP) models that can be solved in a reasonable time by available solvers. We divided the workflow tasks into small segments, distributed them among VMs with multi-vCPU, and formulated them in mathematical programming. In the proposed mathematical model, the objective of a problem and real and physical constraints or restrictions are formulated using exact mathematical functions. We analyzed the treatment of optimal makespan under variations in budget, workflow size, and different segment sizes. The evaluation's results signify that our proposed approach has achieved logical and expected results in meeting the set objectives
    corecore