15,054 research outputs found

    Exploring efficient neural architectures for linguistic-acoustic mapping in text-to-speech

    Get PDF
    Conversion from text to speech relies on the accurate mapping from linguistic to acoustic symbol sequences, for which current practice employs recurrent statistical models such as recurrent neural networks. Despite the good performance of such models (in terms of low distortion in the generated speech), their recursive structure with intermediate affine transformations tends to make them slow to train and to sample from. In this work, we explore two different mechanisms that enhance the operational efficiency of recurrent neural networks, and study their performance–speed trade-off. The first mechanism is based on the quasi-recurrent neural network, where expensive affine transformations are removed from temporal connections and placed only on feed-forward computational directions. The second mechanism includes a module based on the transformer decoder network, designed without recurrent connections but emulating them with attention and positioning codes. Our results show that the proposed decoder networks are competitive in terms of distortion when compared to a recurrent baseline, whilst being significantly faster in terms of CPU and GPU inference time. The best performing model is the one based on the quasi-recurrent mechanism, reaching the same level of naturalness as the recurrent neural network based model with a speedup of 11.2 on CPU and 3.3 on GPU.Peer ReviewedPostprint (published version

    Towards Data-centric Graph Machine Learning: Review and Outlook

    Full text link
    Data-centric AI, with its primary focus on the collection, management, and utilization of data to drive AI models and applications, has attracted increasing attention in recent years. In this article, we conduct an in-depth and comprehensive review, offering a forward-looking outlook on the current efforts in data-centric AI pertaining to graph data-the fundamental data structure for representing and capturing intricate dependencies among massive and diverse real-life entities. We introduce a systematic framework, Data-centric Graph Machine Learning (DC-GML), that encompasses all stages of the graph data lifecycle, including graph data collection, exploration, improvement, exploitation, and maintenance. A thorough taxonomy of each stage is presented to answer three critical graph-centric questions: (1) how to enhance graph data availability and quality; (2) how to learn from graph data with limited-availability and low-quality; (3) how to build graph MLOps systems from the graph data-centric view. Lastly, we pinpoint the future prospects of the DC-GML domain, providing insights to navigate its advancements and applications.Comment: 42 pages, 9 figure
    • …
    corecore