142 research outputs found

    Orthogonal transmultiplexers : extensions to digital subscriber line (DSL) communications

    Get PDF
    An orthogonal transmultiplexer which unifies multirate filter bank theory and communications theory is investigated in this dissertation. Various extensions of the orthogonal transmultiplexer techniques have been made for digital subscriber line communication applications. It is shown that the theoretical performance bounds of single carrier modulation based transceivers and multicarrier modulation based transceivers are the same under the same operational conditions. Single carrier based transceiver systems such as Quadrature Amplitude Modulation (QAM) and Carrierless Amplitude and Phase (CAP) modulation scheme, multicarrier based transceiver systems such as Orthogonal Frequency Division Multiplexing (OFDM) or Discrete Multi Tone (DMT) and Discrete Subband (Wavelet) Multicarrier based transceiver (DSBMT) techniques are considered in this investigation. The performance of DMT and DSBMT based transceiver systems for a narrow band interference and their robustness are also investigated. It is shown that the performance of a DMT based transceiver system is quite sensitive to the location and strength of a single tone (narrow band) interference. The performance sensitivity is highlighted in this work. It is shown that an adaptive interference exciser can alleviate the sensitivity problem of a DMT based system. The improved spectral properties of DSBMT technique reduces the performance sensitivity for variations of a narrow band interference. It is shown that DSBMT technique outperforms DMT and has a more robust performance than the latter. The superior performance robustness is shown in this work. Optimal orthogonal basis design using cosine modulated multirate filter bank is discussed. An adaptive linear combiner at the output of analysis filter bank is implemented to eliminate the intersymbol and interchannel interferences. It is shown that DSBMT is the most suitable technique for a narrow band interference environment. A blind channel identification and optimal MMSE based equalizer employing a nonmaximally decimated filter bank precoder / postequalizer structure is proposed. The performance of blind channel identification scheme is shown not to be sensitive to the characteristics of unknown channel. The performance of the proposed optimal MMSE based equalizer is shown to be superior to the zero-forcing equalizer

    Discrete multitone modulation with principal component filter banks

    Get PDF
    Discrete multitone (DMT) modulation is an attractive method for communication over a nonflat channel with possibly colored noise. The uniform discrete Fourier transform (DFT) filter bank and cosine modulated filter bank have in the past been used in this system because of low complexity. We show in this paper that principal component filter banks (PCFB) which are known to be optimal for data compression and denoising applications, are also optimal for a number of criteria in DMT modulation communication. For example, the PCFB of the effective channel noise power spectrum (noise psd weighted by the inverse of the channel gain) is optimal for DMT modulation in the sense of maximizing bit rate for fixed power and error probabilities. We also establish an optimality property of the PCFB when scalar prefilters and postfilters are used around the channel. The difference between the PCFB and a traditional filter bank such as the brickwall filter bank or DFT filter bank is significant for effective power spectra which depart considerably from monotonicity. The twisted pair channel with its bridged taps, next and fext noises, and AM interference, therefore appears to be a good candidate for the application of a PCFB. This is demonstrated with the help of numerical results for the case of the ADSL channel

    Filter Bank Multicarrier for Massive MIMO

    Full text link
    This paper introduces filter bank multicarrier (FBMC) as a potential candidate in the application of massive MIMO communication. It also points out the advantages of FBMC over OFDM (orthogonal frequency division multiplexing) in the application of massive MIMO. The absence of cyclic prefix in FBMC increases the bandwidth efficiency. In addition, FBMC allows carrier aggregation straightforwardly. Self-equalization, a property of FBMC in massive MIMO that is introduced in this paper, has the impact of reducing (i) complexity; (ii) sensitivity to carrier frequency offset (CFO); (iii) peak-to-average power ratio (PAPR); (iv) system latency; and (v) increasing bandwidth efficiency. The numerical results that corroborate these claims are presented.Comment: 7 pages, 6 figure

    Asymmetrical digital subscriber line (ADSL) an in-depth study

    Get PDF
    Asymmetrical Digital Subscriber Line (ADSL) is one member of a group of broadband access technologies that uses the existing copper-based local loop of the analog PSTN for high-speed digital data transmission. One feature of ADSL is that it permits analog voice POTS transmissions to continue uninterrupted over the same wiring. Specifically, POTS continues to use the 0 to 4 KHz frequency range of the copper wiring, while ADSL uses bandwidth starting at 25 KHz and extending up to approximately 1.1 MHz for data transmission. The term asymmetrical refers to the fact that data rates downstream (to the user) and upstream (from the user) are not the same. Typical ADSL data rates range from 1.536 to 6.144 Mbps downstream and from 16 to 640 Kbps upstream. Local loop length, wire size, and the presence of devices to improve voice communication such as bridged taps and loading coils all affect ADSL data rates. Digital data is coded by one of two methods: Discrete Multitone Modulation (DMT) or Carrierless Amplitude and Phase Modulation (CAP). Echo control is also accomplished by one of two methods: Frequency Division Multiplexing (FDM) or echo cancellation. This paper consists of four sections: 1) A technical review and comparison of the CAP and DMT line encoding technologies. 2) A market review of the presence of CAP and DMT technologies in customer premise equipment (CPE) such as modems and routers. 3) A review of the POTS physical layer that exists between the ADSL subscriber and the Telco CO, and its impact on ADSL availability and quality of service (QOS). 4) A technical review of the newer, splitterless, G.Lite technolog

    A Generalized Window Approach for Designing Transmultiplexers

    Full text link
    This paper proposes a computational, very efficient, approach for designing a novel family of M-channel maximally decimated nearly perfect-reconstruction cosine-modulated transmultiplexers. This approach is referred to as the generalized windowing method for transmultiplexers because after knowing the transmission channel a proper weighted sum of the inter-channel and inter-symbol interferences can be properly taken into account in the optimization of the window function, unlike in other existing windowing techniques. The proposed approach has also the following two advantages. First, independent of the number of subchannels and the common order of the subchannel filters, the number of unknowns is only four. Second, the overall optimization procedure is made considerably fast by estimating the above-mentioned sum in terms of two novel measures, namely, the signal to inter-symbol and the signal to inter-channel interferences, which are very easy to evaluate. Furthermore, when the transmission channel is not considered in the design, a table is provided, which contains the parameters for designing the prototype filter directly by using the windowing method without any time-consuming optimization. When comparing the resulting transmultiplexers with the corresponding perfect-reconstruction designs (the same number of subchannels and same prototype filter order), the levels of interferences are practically the same. However, when the system is affected by a strong narrowband interference, the proposed transmultiplexers outperform their PR counterparts. Design examples are included illustrating the efficiency of the proposed design approach over other existing techniques based on the use of the windowing method

    Doctor of Philosophy

    Get PDF
    dissertationThe demand for high speed communication has been increasing in the past two decades. Multicarrier communication technology has been suggested to address this demand. Orthogonal frequency-division multiplexing (OFDM) is the most widely used multicarrier technique. However, OFDM has a number of disadvantages in time-varying channels, multiple access, and cognitive radios. On the other hand, filterbank multicarrier (FBMC) communication has been suggested as an alternative to OFDM that can overcome the disadvantages of OFDM. In this dissertation, we investigate the application of filtered multitone (FMT), a subset of FBMC modulation methods, to slow fading and fast fading channels. We investigate the FMT transmitter and receiver in continuous and discrete time domains. An efficient implementation of FMT systems is derived and the conditions for perfect reconstruction in an FBMC communication system are presented. We derive equations for FMT in slow fading channels that allow evaluation of FMT when applied to mobile wireless communication systems. We consider using fractionally spaced per tone channel equalizers with different number of taps. The numerical results are presented to investigate the performance of these equalizers. The numerical results show that single-tap equalizers suffice for typical wireless channels. The equalizer design study is advanced by introducing adaptive equalizers which use channel estimation. We derive equations for a minimum mean square error (MMSE) channel estimator and improve the channel estimation by considering the finite duration of channel impulse response. The results of optimum equalizers (when channel is known perfectly) are compared with those of the adaptive equalizers, and it is found that a loss of 1 dB or less incurs. We also introduce a new form of FMT which is specially designed to handle doubly dispersive channels. This method is called FMT-dd (FMT for doubly dispersive channels). The proposed FMT-dd is applied to two common methods of data symbol orientation in the time-frequency space grid; namely, rectangular and hexagonal lattices. The performance of these methods along with OFDM and the conventional FMT are compared and a significant improvement in performance is observed. The FMT-dd design is applied to real-world underwater acoustic (UWA) communication channels. The experimental results from an at-sea experiment (ACOMM10) show that this new design provides a significant gain over OFDM. The feasibility of implementing a MIMO system for multicarrier UWA communication channels is studied through computer simulations. Our study emphasizes the bandwidth efficiency of multicarrier MIMO communications .We show that the value of MIMO to UWA communication is very limited

    An Oversampled Filter Bank Multicarrier System for cognitive Radio

    Get PDF

    Multiband Carrierless Amplitude Phase Modulation for High Capacity Optical Data Links

    Get PDF
    Short range optical data links are experiencing bandwidth limitations making it very challenging to cope with the growing data transmission capacity demands. Parallel optics appears as a valid short-term solution. It is, however, not a viable solution in the long-term because of its complex optical packaging. Therefore, increasing effort is now put into the possibility of exploiting higher order modulation formats with increased spectral efficiency and reduced optical transceiver complexity. As these type of links are based on intensity modulation and direct detection, modulation formats relying on optical coherent detection can not be straight forwardly employed. As an alternative and more viable solution, this paper proposes the use of carrierless amplitude phase (CAP) in a novel multiband approach (MultiCAP) that achieves record spectral efficiency, increases tolerance towards dispersion and bandwidth limitations and reduces the complexity of the transceiver. We report on numerical simulations and experimental demonstrations with capacity beyond 100 Gb/s transmission using a single externally modulated laser (EML). In addition, an extensive comparison with conventional CAP is also provided. The reported experiment uses MultiCAP to achieve 102.4 Gb/s transmission, corresponding to a data payload of 95.2 Gb/s error free transmission by using a 7% forward error correction (FEC) code. The signal is successfully recovered after 15 km of standard single mode fiber (SSMF) in a system limited by a 3 dB bandwidth of 14 GHz
    corecore