152 research outputs found

    Polar codes in network quantum information theory

    Get PDF
    Polar coding is a method for communication over noisy classical channels which is provably capacity-achieving and has an efficient encoding and decoding. Recently, this method has been generalized to the realm of quantum information processing, for tasks such as classical communication, private classical communication, and quantum communication. In the present work, we apply the polar coding method to network quantum information theory, by making use of recent advances for related classical tasks. In particular, we consider problems such as the compound multiple access channel and the quantum interference channel. The main result of our work is that it is possible to achieve the best known inner bounds on the achievable rate regions for these tasks, without requiring a so-called quantum simultaneous decoder. Thus, our work paves the way for developing network quantum information theory further without requiring a quantum simultaneous decoder.Comment: 18 pages, 2 figures, v2: 10 pages, double column, version accepted for publicatio

    Homologous Codes for Multiple Access Channels

    Full text link
    Building on recent development by Padakandla and Pradhan, and by Lim, Feng, Pastore, Nazer, and Gastpar, this paper studies the potential of structured nested coset coding as a complete replacement for random coding in network information theory. The roles of two techniques used in nested coset coding to generate nonuniform codewords, namely, shaping and channel transformation, are clarified and illustrated via the simple example of the two-sender multiple access channel. While individually deficient, the optimal combination of shaping and channel transformation is shown to achieve the same performance as traditional random codes for the general two-sender multiple access channel. The achievability proof of the capacity region is extended to the multiple access channels with more than two senders, and with one or more receivers. A quantization argument consistent with the construction of nested coset codes is presented to prove achievability for their Gaussian counterparts. These results open up new possibilities of utilizing nested coset codes with the same generator matrix for a broader class of applications

    Broadcast Capacity Region of Two-Phase Bidirectional Relaying

    Full text link
    In a three-node network a half-duplex relay node enables bidirectional communication between two nodes with a spectral efficient two phase protocol. In the first phase, two nodes transmit their message to the relay node, which decodes the messages and broadcast a re-encoded composition in the second phase. In this work we determine the capacity region of the broadcast phase. In this scenario each receiving node has perfect information about the message that is intended for the other node. The resulting set of achievable rates of the two-phase bidirectional relaying includes the region which can be achieved by applying XOR on the decoded messages at the relay node. We also prove the strong converse for the maximum error probability and show that this implies that the [\eps_1,\eps_2]-capacity region defined with respect to the average error probability is constant for small values of error parameters \eps_1, \eps_2.Comment: 25 pages, 2 figures, submitted to IEEE Transactions on Information Theor

    Finite-Blocklength and Error-Exponent Analyses for LDPC Codes in Point-to-Point and Multiple Access Communication

    Get PDF
    This paper applies error-exponent and dispersionstyle analyses to derive finite-blocklength achievability bounds for low-density parity-check (LDPC) codes over the point-to-point channel (PPC) and multiple access channel (MAC). The errorexponent analysis applies Gallager’s error exponent to bound achievable symmetrical and asymmetrical rates in the MAC. The dispersion-style analysis begins with a generalization of the random coding union (RCU) bound from random code ensembles with i.i.d. codewords to random code ensembles in which codewords may be statistically dependent; this generalization is useful since the codewords of random linear codes such as LDPC codes are dependent. Application of the RCU bound yields finiteblocklength error bounds and asymptotic achievability results for both i.i.d. random codes and LDPC codes. For discrete, memoryless channels, these results show that LDPC codes achieve first- and second-order performance that is optimal for the PPC and identical to the best prior results for the MAC
    • …
    corecore