88 research outputs found

    Corticomuscular coherence between motor cortex, somatosensory areas and forearm muscles in the monkey

    Get PDF
    Corticomuscular coherence has previously been reported between primary motor cortex (M1) and contralateral muscles. We examined whether such coherence could also be seen from somatosensory areas. Local field potentials (LFPs) were recorded from primary somatosensory cortex (S1; areas 3a and 2) and posterior parietal cortex (PPC; area 5) simultaneously with M1 LFP and forearm EMG activity in two monkeys during an index finger flexion task. Significant beta-band (∼20 Hz) corticomuscular coherence was found in all areas investigated. Directed coherence (Granger causality) analysis was used to investigate the direction of effects. Surprisingly, the strongest beta-band directed coherence was in the direction from S1/PPC to muscle; it was much weaker in the ascending direction. Examination of the phase of directed coherence provided estimates of the time delay from cortex to muscle. Delays were longer from M1 (∼62 ms for the first dorsal interosseous muscle) than from S1/PPC (∼36 ms). We then looked at coherence and directed coherence between M1 and S1 for clues to this discrepancy. Directed coherence showed large beta-band effects from S1/PPC to M1, with smaller directed coherence in the reverse direction. The directed coherence phase suggested a delay of ∼40 ms from M1 to S1. Corticomuscular coherence from S1/PPC could involve multiple pathways; the most important is probably common input from M1 to S1/PPC and muscles. If correct, this implies that somatosensory cortex receives oscillatory efference copy information from M1 about the motor command. This could allow sensory inflow to be interpreted in the light of its motor context

    A wavelet-based correlation analysis framework to study cerebromuscular activity in essential tremor

    Get PDF
    Deep brain stimulation (DBS) provides dramatic tremor relief in patients with severe essential tremor (ET). Typically, the VIM nucleus is the most effective brain area to target for high-frequency electrical stimulation in these patients. Correlation analysis between electrical local field potential (LFP) recordings from the thalamic DBS leads and electrical muscle activity from the contralateral tremulous limb has become an attractive practical tool to interpret the LFPs and their association with the tremulous clinical manifestations. Although functional connectivity analysis between brain electrical recordings and electromyographic (EMG) signals from the tremor has been of interest to an increasing number of engineering researchers, there is no well-accepted tailored framework to consistently characterise the association between thalamic electrical recordings and the tremorogenic EMG activity. Methods. This paper proposes a novel framework to address this challenge, including an estimation of the interaction strength using wavelet cross-spectrum and phase lag index while demonstrating the statistical significance of the findings. Results. Consistent results were estimated for single and multiple trials of consecutive or partially overlapping epochs of data. The latter approach reveals a substantial increase on the range of statistically significant dynamic low-frequency interrelationships while decreasing the dynamic range of high-frequency interactions. Conclusion. Results from both simulation and real data demonstrate the feasibility and robustness of the proposed framework. Significance. This study offers the proof of principle required to implement this methodology to uncover VIM thalamic LFP-EMG interactions for (i) better understanding of the pathophysiology of tremor; (ii) objective selection of the DBS electrode contacts with the highest strength of association with the tremorogenic EMG, a particularly useful feature for the implementation of novel multicontact directional leads in clinical practice; and (iii) future research on DBS closed-loop devices

    Time and frequency domain methods for quantifying common modulation of motor unit firing patterns

    Get PDF
    BACKGROUND: In investigations of the human motor system, two approaches are generally employed toward the identification of common modulating drives from motor unit recordings. One is a frequency domain method and uses the coherence function to determine the degree of linear correlation between each frequency component of the signals. The other is a time domain method that has been developed to determine the strength of low frequency common modulations between motor unit spike trains, often referred to in the literature as 'common drive'. METHODS: The relationships between these methods are systematically explored using both mathematical and experimental procedures. A mathematical derivation is presented that shows the theoretical relationship between both time and frequency domain techniques. Multiple recordings from concurrent activities of pairs of motor units are studied and linear regressions are performed between time and frequency domain estimates (for different time domain window sizes) to assess their equivalence. RESULTS: Analytically, it may be demonstrated that under the theoretical condition of a narrowband point frequency, the two relations are equivalent. However practical situations deviate from this ideal condition. The correlation between the two techniques varies with time domain moving average window length and for window lengths of 200 ms, 400 ms and 800 ms, the r(2 )regression statistics (p < 0.05) are 0.56, 0.81 and 0.80 respectively. CONCLUSIONS: Although theoretically equivalent and experimentally well correlated there are a number of minor discrepancies between the two techniques that are explored. The time domain technique is preferred for short data segments and is better able to quantify the strength of a broad band drive into a single index. The frequency domain measures are more encompassing, providing a complete description of all oscillatory inputs and are better suited to quantifying narrow ranges of descending input into a single index. In general the physiological question at hand should dictate which technique is best suited

    Subband Independent Component Analysis for Coherence Enhancement

    Get PDF
    Objective: Cortico-muscular coherence (CMC) is becoming a common technique for detection and characterization of functional coupling between the motor cortex and muscle activity. It is typically evaluated between surface electromyogram (sEMG) and electroencephalogram (EEG) signals collected synchronously during controlled movement tasks. However, the presence of noise and activities unrelated to observed motor tasks in sEMG and EEG results in low CMC levels, which often makes functional coupling difficult to detect. Methods: In this paper, we introduce Coherent Subband Independent Component Analysis (CoSICA) to enhance synchronous cortico-muscular components in mixtures captured by sEMG and EEG. The methodology relies on filter bank processing to decompose sEMG and EEG signals into frequency bands. Then, it applies independent component analysis along with a component selection algorithm for re-synthesis of sEMG and EEG designed to maximize CMC levels. Results: We demonstrate the effectiveness of the proposed method in increasing CMC levels across different signal-to-noise ratios first using simulated data. Using neurophysiological data, we then illustrate that CoSICA processing achieves a pronounced enhancement of original CMC. Conclusion: Our findings suggest that the proposed technique provides an effective framework for improving coherence detection. Significance: The proposed methodologies will eventually contribute to understanding of movement control and has high potential for translation into clinical practice

    Subband Independent Component Analysis for Coherence Enhancement

    Get PDF
    Objective: Cortico-muscular coherence (CMC) is becoming a common technique for detection and characterization of functional coupling between the motor cortex and muscle activity. It is typically evaluated between surface electromyo- gram (sEMG) and electroencephalogram (EEG) signals collected synchronously during controlled movement tasks. However, the presence of noise and activities unrelated to observed motor tasks in sEMG and EEG results in low CMC levels, which often makes functional coupling difficult to detect. Methods: In this paper, we introduce Coherent Subband Independent Component Analysis (CoSICA) to enhance synchronous cortico-muscular components in mixtures captured by sEMG and EEG. The methodology relies on filter bank processing to decompose sEMG and EEG signals into frequency bands. Then, it applies independent component analysis along with a component selection algorithm for re- synthesis of sEMG and EEG designed to maximize CMC levels. Results: We demonstrate the effectiveness of the proposed method in increasing CMC levels across different signal-to-noise ratios first using simulated data. Using neurophysiological data, we then illustrate that CoSICA processing achieves a pronounced enhancement of original CMC. Conclusion: Our findings suggest that the proposed technique provides an effective framework for improving coherence detection. Significance: The proposed methodologies will eventually contribute to understanding of movement control and has high potential for translation into clinical practice

    Localization of cortico-peripheral coherence with electroencephalography.

    Get PDF
    Background The analysis of coherent networks from continuous recordings of neural activity with functional MRI or magnetoencephalography has provided important new insights into brain physiology and pathology. Here we assess whether valid localizations of coherent cortical networks can also be obtained from high-resolution electroencephalography (EEG) recordings. Methods EEG was recorded from healthy subjects and from patients with ischemic brain lesions during a tonic hand muscle contraction task and during continuous visual stimulation with an alternating checkerboard. These tasks induce oscillations in the primary hand motor area or in the primary visual cortex, respectively, which are coherent with extracerebral signals (hand muscle electromyogram or visual stimulation frequency). Cortical oscillations were reconstructed with different inverse solutions and the coherence between oscillations at each cortical voxel and the extracerebral signals was calculated. Moreover, simulations of coherent point sources were performed. Results Cortico-muscular coherence was correctly localized to the primary hand motor area and the steady-state visual evoked potentials to the primary visual cortex in all subjects and patients. Sophisticated head models tended to yield better localization accuracy than a single sphere model. A Minimum Variance Beamformer (MVBF) provided more accurate and focal localizations of simulated point sources than an L2 Minimum Norm (MN) inverse solution. In the real datasets, the MN maps had less localization error but were less focal than MVBF maps. Conclusions EEG can localize coherent cortical networks with sufficient accuracy
    • …
    corecore