5 research outputs found

    From Adaptive Reasoning to Cognitive Factory: Bringing Cognitive Intelligence to Manufacturing Technology

    Get PDF
    There are two important aspects that will play important roles in future manufacturing systems: changeability and human-machine collaboration. The first aspect, changeability, concerns with the ability of production tools to reconfigure themselves to the new manufacturing settings, possibly with unknown prior information, while maintaining their reliability at lowest cost. The second aspect, human-machine collaboration, emphasizes the ability of production tools to put themselves on the position as humans’ co-workers. The interplay between these two aspects will not only determine the economical accomplishment of a manufacturing process, but it will also shape the future of the technology itself. To address this future challenge of manufacturing systems, the concept of Cognitive Factory was proposed. Along this line, machines and processes are equipped with cognitive capabilities in order to allow them to assess and increase their scope of operation autonomously. However, the technical implementation of such a concept is still widely open for research, since there are several stumbling blocks that limit practicality of the proposed methods. In this paper, we introduce our method to achieve the goal of the Cognitive Factory. Our method is inspired by the working mechanisms of a human’s brain; it works by harnessing the reasoning capabilities of cognitive architecture. By utilizing such an adaptive reasoning mechanism, we envision the future manufacturing systems with cognitive intelligence. We provide illustrative examples from our current research work to demonstrate that our proposed method is notable to address the primary issues of the Cognitive Factory: changeability and human-machine collaboration

    Egomotion from event-based SNN optical flow

    Get PDF
    We present a method for computing egomotion using event cameras with a pre-trained optical flow spiking neural network (SNN). To address the aperture problem encountered in the sparse and noisy normal flow of the initial SNN layers, our method includes a sliding-window bin-based pooling layer that computes a fused full flow estimate. To add robustness to noisy flow estimates, instead of computing the egomotion from vector averages, our method optimizes the intersection of constraints. The method also includes a RANSAC step to robustly deal with outlier flow estimates in the pooling layer. We validate our approach on both simulated and real scenes and compare our results favorably to the state-of-the-art methods. However, our method may be sensitive to datasets and motion speeds different from those used for training, limiting its generalizability.This work received support from projects EBCON (PID2020-119244GBI00) and AUDEL (TED2021-131759A-I00) funded by MCIN/ AEI/ 10.13039/ 501100011033 and by the "European Union NextGenerationEU/PRTR"; the Consolidated Research Group RAIG (2021 SGR 00510) of the Departament de Recerca i Universitats de la Generalitat de Catalunya; and by an FI AGAUR PhD grant to Yi Tian.Peer ReviewedPostprint (author's final draft

    Sensor fusion in distributed cortical circuits

    Get PDF
    The substantial motion of the nature is to balance, to survive, and to reach perfection. The evolution in biological systems is a key signature of this quintessence. Survival cannot be achieved without understanding the surrounding world. How can a fruit fly live without searching for food, and thereby with no form of perception that guides the behavior? The nervous system of fruit fly with hundred thousand of neurons can perform very complicated tasks that are beyond the power of an advanced supercomputer. Recently developed computing machines are made by billions of transistors and they are remarkably fast in precise calculations. But these machines are unable to perform a single task that an insect is able to do by means of thousands of neurons. The complexity of information processing and data compression in a single biological neuron and neural circuits are not comparable with that of developed today in transistors and integrated circuits. On the other hand, the style of information processing in neural systems is also very different from that of employed by microprocessors which is mostly centralized. Almost all cognitive functions are generated by a combined effort of multiple brain areas. In mammals, Cortical regions are organized hierarchically, and they are reciprocally interconnected, exchanging the information from multiple senses. This hierarchy in circuit level, also preserves the sensory world within different levels of complexity and within the scope of multiple modalities. The main behavioral advantage of that is to understand the real-world through multiple sensory systems, and thereby to provide a robust and coherent form of perception. When the quality of a sensory signal drops, the brain can alternatively employ other information pathways to handle cognitive tasks, or even to calibrate the error-prone sensory node. Mammalian brain also takes a good advantage of multimodal processing in learning and development; where one sensory system helps another sensory modality to develop. Multisensory integration is considered as one of the main factors that generates consciousness in human. Although, we still do not know where exactly the information is consolidated into a single percept, and what is the underpinning neural mechanism of this process? One straightforward hypothesis suggests that the uni-sensory signals are pooled in a ploy-sensory convergence zone, which creates a unified form of perception. But it is hard to believe that there is just one single dedicated region that realizes this functionality. Using a set of realistic neuro-computational principles, I have explored theoretically how multisensory integration can be performed within a distributed hierarchical circuit. I argued that the interaction of cortical populations can be interpreted as a specific form of relation satisfaction in which the information preserved in one neural ensemble must agree with incoming signals from connected populations according to a relation function. This relation function can be seen as a coherency function which is implicitly learnt through synaptic strength. Apart from the fact that the real world is composed of multisensory attributes, the sensory signals are subject to uncertainty. This requires a cortical mechanism to incorporate the statistical parameters of the sensory world in neural circuits and to deal with the issue of inaccuracy in perception. I argued in this thesis how the intrinsic stochasticity of neural activity enables a systematic mechanism to encode probabilistic quantities within neural circuits, e.g. reliability, prior probability. The systematic benefit of neural stochasticity is well paraphrased by the problem of Duns Scotus paradox: imagine a donkey with a deterministic brain that is exposed to two identical food rewards. This may make the animal suffer and die starving because of indecision. In this thesis, I have introduced an optimal encoding framework that can describe the probability function of a Gaussian-like random variable in a pool of Poisson neurons. Thereafter a distributed neural model is proposed that can optimally combine conditional probabilities over sensory signals, in order to compute Bayesian Multisensory Causal Inference. This process is known as a complex multisensory function in the cortex. Recently it is found that this process is performed within a distributed hierarchy in sensory cortex. Our work is amongst the first successful attempts that put a mechanistic spotlight on understanding the underlying neural mechanism of Multisensory Causal Perception in the brain, and in general the theory of decentralized multisensory integration in sensory cortex. Engineering information processing concepts in the brain and developing new computing technologies have been recently growing. Neuromorphic Engineering is a new branch that undertakes this mission. In a dedicated part of this thesis, I have proposed a Neuromorphic algorithm for event-based stereoscopic fusion. This algorithm is anchored in the idea of cooperative computing that dictates the defined epipolar and temporal constraints of the stereoscopic setup, to the neural dynamics. The performance of this algorithm is tested using a pair of silicon retinas

    Sensor fusion in distributed cortical circuits

    Get PDF
    The substantial motion of the nature is to balance, to survive, and to reach perfection. The evolution in biological systems is a key signature of this quintessence. Survival cannot be achieved without understanding the surrounding world. How can a fruit fly live without searching for food, and thereby with no form of perception that guides the behavior? The nervous system of fruit fly with hundred thousand of neurons can perform very complicated tasks that are beyond the power of an advanced supercomputer. Recently developed computing machines are made by billions of transistors and they are remarkably fast in precise calculations. But these machines are unable to perform a single task that an insect is able to do by means of thousands of neurons. The complexity of information processing and data compression in a single biological neuron and neural circuits are not comparable with that of developed today in transistors and integrated circuits. On the other hand, the style of information processing in neural systems is also very different from that of employed by microprocessors which is mostly centralized. Almost all cognitive functions are generated by a combined effort of multiple brain areas. In mammals, Cortical regions are organized hierarchically, and they are reciprocally interconnected, exchanging the information from multiple senses. This hierarchy in circuit level, also preserves the sensory world within different levels of complexity and within the scope of multiple modalities. The main behavioral advantage of that is to understand the real-world through multiple sensory systems, and thereby to provide a robust and coherent form of perception. When the quality of a sensory signal drops, the brain can alternatively employ other information pathways to handle cognitive tasks, or even to calibrate the error-prone sensory node. Mammalian brain also takes a good advantage of multimodal processing in learning and development; where one sensory system helps another sensory modality to develop. Multisensory integration is considered as one of the main factors that generates consciousness in human. Although, we still do not know where exactly the information is consolidated into a single percept, and what is the underpinning neural mechanism of this process? One straightforward hypothesis suggests that the uni-sensory signals are pooled in a ploy-sensory convergence zone, which creates a unified form of perception. But it is hard to believe that there is just one single dedicated region that realizes this functionality. Using a set of realistic neuro-computational principles, I have explored theoretically how multisensory integration can be performed within a distributed hierarchical circuit. I argued that the interaction of cortical populations can be interpreted as a specific form of relation satisfaction in which the information preserved in one neural ensemble must agree with incoming signals from connected populations according to a relation function. This relation function can be seen as a coherency function which is implicitly learnt through synaptic strength. Apart from the fact that the real world is composed of multisensory attributes, the sensory signals are subject to uncertainty. This requires a cortical mechanism to incorporate the statistical parameters of the sensory world in neural circuits and to deal with the issue of inaccuracy in perception. I argued in this thesis how the intrinsic stochasticity of neural activity enables a systematic mechanism to encode probabilistic quantities within neural circuits, e.g. reliability, prior probability. The systematic benefit of neural stochasticity is well paraphrased by the problem of Duns Scotus paradox: imagine a donkey with a deterministic brain that is exposed to two identical food rewards. This may make the animal suffer and die starving because of indecision. In this thesis, I have introduced an optimal encoding framework that can describe the probability function of a Gaussian-like random variable in a pool of Poisson neurons. Thereafter a distributed neural model is proposed that can optimally combine conditional probabilities over sensory signals, in order to compute Bayesian Multisensory Causal Inference. This process is known as a complex multisensory function in the cortex. Recently it is found that this process is performed within a distributed hierarchy in sensory cortex. Our work is amongst the first successful attempts that put a mechanistic spotlight on understanding the underlying neural mechanism of Multisensory Causal Perception in the brain, and in general the theory of decentralized multisensory integration in sensory cortex. Engineering information processing concepts in the brain and developing new computing technologies have been recently growing. Neuromorphic Engineering is a new branch that undertakes this mission. In a dedicated part of this thesis, I have proposed a Neuromorphic algorithm for event-based stereoscopic fusion. This algorithm is anchored in the idea of cooperative computing that dictates the defined epipolar and temporal constraints of the stereoscopic setup, to the neural dynamics. The performance of this algorithm is tested using a pair of silicon retinas

    Change blindness: eradication of gestalt strategies

    Get PDF
    Arrays of eight, texture-defined rectangles were used as stimuli in a one-shot change blindness (CB) task where there was a 50% chance that one rectangle would change orientation between two successive presentations separated by an interval. CB was eliminated by cueing the target rectangle in the first stimulus, reduced by cueing in the interval and unaffected by cueing in the second presentation. This supports the idea that a representation was formed that persisted through the interval before being 'overwritten' by the second presentation (Landman et al, 2003 Vision Research 43149–164]. Another possibility is that participants used some kind of grouping or Gestalt strategy. To test this we changed the spatial position of the rectangles in the second presentation by shifting them along imaginary spokes (by ±1 degree) emanating from the central fixation point. There was no significant difference seen in performance between this and the standard task [F(1,4)=2.565, p=0.185]. This may suggest two things: (i) Gestalt grouping is not used as a strategy in these tasks, and (ii) it gives further weight to the argument that objects may be stored and retrieved from a pre-attentional store during this task
    corecore