
Egomotion from event-based SNN optical flow
Yi Tian

Juan Andrade-Cetto
ytian@iri.upc.edu
cetto@iri.upc.edu

Institut de Robòtica i Informàtica Industrial, CSIC-UPC
Barcelona, Spain

ABSTRACT
We present a method for computing egomotion using event cam-
eras with a pre-trained optical flow spiking neural network (SNN).
To address the aperture problem encountered in the sparse and
noisy normal flow of the initial SNN layers, our method includes a
sliding-window bin-based pooling layer that computes a fused full
flow estimate. To add robustness to noisy flow estimates, instead
of computing the egomotion from vector averages, our method
optimizes the intersection of constraints. The method also includes
a RANSAC step to robustly deal with outlier flow estimates in the
pooling layer. We validate our approach on both simulated and real
scenes and compare our results favorably to the state-of-the-art
methods. However, our method may be sensitive to datasets and
motion speeds different from those used for training, limiting its
generalizability.

CCS CONCEPTS
• Computing methodologies→ Vision for robotics.

KEYWORDS
spiking neural network, event camera, optical flow, egomotion
ACM Reference Format:
Yi Tian and Juan Andrade-Cetto. 2023. Egomotion from event-based SNN
optical flow. In International Conference on Neuromorphic Systems (ICONS
’23), August 1–3, 2023, Santa Fe, NM, USA. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3589737.3605978

1 INTRODUCTION
Egomotion estimation is a crucial task in visual navigation for
robots, vehicles, and wearable computing, which involves comput-
ing the 3D camera motion relative to a rigid scene. Traditionally,
egomotion is estimated by measuring the apparent motion from
frame to frame of image features. However, conventional visual
odometry systems are prone to failure in harsh illumination condi-
tions due to motion blur and image saturation, which impede the
extraction of image correspondences [28].

In contrast, event cameras detect independently the change of
luminance in each pixel and produce an asynchronous feed of pixel
coordinates where intensity changes occur. Since no frame or image

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of the United States
government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.
ICONS ’23, August 1–3, 2023, Santa Fe, NM, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0175-7/23/08. . . $15.00
https://doi.org/10.1145/3589737.3605978

is produced, event cameras can detect very fast motion with low
latency, down to `s time scale, and high dynamic range. Since each
pixel is processed independently, event cameras have high dynamic
range up to 140dB, which makes them robust also to abrupt changes
in illumination. Further, their sparse output without redundant
information requires low power consumption, suggesting their
adoption in mobile embedded systems.

These advantages make them an ideal candidate to solve the
egomotion problem in difficult navigation tasks [30, 35]. However,
the task is challenging, since event-based egomotion systems must
compute apparent motion from such sparse asynchronous data
feed, either aggregating events temporally to build features to track
or match [3], or better yet treating all events independently [7].

Spiking Neural Networks (SNNs) process discrete spikes using
timing information, making them a natural match to process the
spatio-temporal data from event cameras. The combination of event
cameras and SNNs has raised increasing interest in different areas
of computer vision. They have mostly been used to tackle low-
level vision tasks such as feature extraction [13], tracking [18, 19,
32], depth estimation [26], optical flow [12, 15, 23, 24, 33], motion
segmentation [8, 29], and image reconstruction [36], but also some
higher-level vision tasks such as object or gesture detection and
recognition [2, 9, 22]. Limited work has been done in using SNNs
for camera egomotion estimation [11].

In this paper, we present a method to estimate the egomotion
of an event camera with an SNN. We compute optical flow using
a pre-trained network and use it to compute global egomotion es-
timates. The SNN was trained using unsupervised learning with
spike-timing-dependent plasticity, showing selectivity for local flow.
To estimate both rotational and translational motion at different alti-
tudes, we add an optimization-based pooling technique to compute
global flow estimates, addressing the aperture problem for noisy
and sparse normal flows. After pooling, egomotion with outlier
rejection is computed in a final step.

For validation, we perform tests in multiple datasets on both
pure rotation and pure translation motion along the three axes and
compare our results with the state of the art. Our contribution is
two-fold: first, we have presented a framework for event-based
ego-motion estimation using optical flow from a pre-trained SNN.
Secondly, we have implemented an optimization-based pooling
technique to solve the aperture problem for the noisy and sparse
normal flow input.

2 RELATEDWORK
Previous works on SNN-based dense optical flow estimation have
used bio-inspired Gabor filters [23, 25] or unsupervised learning
with STDP to learn these filters [4, 24]. However, these methods

https://orcid.org/0000-0002-8673-6363
https://orcid.org/0000-0002-6354-8941
https://doi.org/10.1145/3589737.3605978
https://doi.org/10.1145/3589737.3605978

ICONS ’23, August 1–3, 2023, Santa Fe, NM, USA Yi Tian and Juan Andrade-Cetto

Input Merge

Convolution

Pooling Egomotion

Local Full
optical flow optical flow

Events
Events with

merged
polarities

2 x 45 x 60 1 x 45 x 60

64 x 22 x 30

64 x 3 x 4 6 x 1

Figure 1: Proposed spiking neural network structure.

suffer from the common problem of spatio-temporal filter meth-
ods, which can only be deployed for test data similar to that used
for training. For self-supervised event-based optical flow learning,
most works follow the pipeline of their ANN counterpart and use
photometric or contrast maximization losses to train the SNN with
surrogate gradients [33, 34]. Some later works have combined an
SNN in the encoder and an ANN in the decoder to balance perfor-
mance and energy efficiency [15, 16].

While ANNs have been used to learn egomotion from event
inputs [30, 34], the only notable work on SNN-based egomotion
estimation to date is a framework for computing 3-axis angular
velocity regression using supervised learning [11]. However, using
purely SNNs to recover both rotational and translational egomotion
has not yet been addressed in the literature.

3 NETWORK ARCHITECTURE
We adopt the hierarchical SNN architecture proposed by [24], which
utilizes an adaptive neuronal model and unsupervised STDP learn-
ing. The proposed spiking neuronal model is a modified version of
the widely used Leaky Integrate and Fire (LIF) model. The LIF model
assumes that spike timing, rather than spike amplitude, carries the
encoded information, which aligns with the contrast threshold fir-
ing mechanism of event cameras. The LIF model is both simple
and computationally efficient, enabling the integration of multiple
synapses from different neurons into a presynaptic train. Moreover,
the model incorporates a refractory period after the synapses.

As shown in Fig.1, our modified neural network structure retains
the input, merge, and multisynaptic convolution layers from[24].
However, we do not use a feature extraction layer since we are not
interested in training local motion. Instead, we use the pre-trained
kernels for the multisynaptic convolution layer to obtain local
motion estimates and to compute local optical flow. Furthermore,
we replace the pooling layer with our own layer, which includes
a more robust integration of sparse normal flows. Additionally,
we add an extra module to the network for the computation of
egomotion that is robust to outliers. The purpose of each layer is
summarized as follows:
Input layer: The input layer consists of a 2D neural map, with
one dimension per event polarity. Each neuron in the input layer
receives a spike train of events from the sensor within a temporal
window of size 𝜏𝑠 , with no overlap. To improve computational effi-
ciency, the input size is scaled by a factor of 𝑠 in both the horizontal
and vertical directions.
Merge layer: Events are triggered at abrupt changes in brightness,
which primarily occur at edges. However, local motion cannot be
determined unambiguously when viewed locally, leading to the

Figure 2: The 64 pre-trained spatiotemporal kernels used
in the multisynaptic convolutional layer. Each kernel corre-
sponds to a particular local velocity-tuned filter in a specific
direction of motion. For instance, kernels in the first column
will respond to diagonal motion, whereas kernels in the third
column are sensitive mostly to vertical motion.

aperture problem. At this stage, local motion is only dependent on
the spatial configuration and frequency of events, and not their
polarity. Hence, we merge the two polarity input neural maps
into one convolutional single-synaptic layer with no neighboring
connections.
Multisynaptic convolutional layer: This layer is equivalent to
the MS-Conv layer in [24] and is responsible for computing local
motion estimates through velocity-selective neurons. Neural con-
nections are multisynaptic with different constant transmission
delays 𝜏𝑑 . The spatiotemporal convolutional kernels used in this
layer are pre-trained to encode features that respond to local flow
in different directions and magnitudes. Local optical flow is com-
puted using our modified version of the EdgeFlow algorithm [20],
as described in Sec. 4.1.
Pooling layer: Our convolutional and single-synaptic pooling
layer uses the local optical flow estimates to compute a fused full
flow estimate, incorporating two different pooling mechanisms
for improved geometric consistency. More details are available in
Sec. 4.2. The full flow output of this layer serves as input to the
egomotion estimation module.

4 OPTICAL FLOW ESTIMATION
4.1 Local flow
Local optical flow is computed using 64 pre-trained kernels from the
rotating disk dataset in [24] (Fig. 2). These kernels are 3D filters (𝑥 ,
𝑦, and 𝜏) that identify motion at different directions and speeds. To
estimate local velocities, histograms of the horizontal and vertical
directions are computed for the two synapses with the most activity
in the temporal window. Then, the sum of absolute differences for
both horizontal and vertical pairs is obtained, and least squares
fitting is applied to refine the solution [21].

An example of the computation for one of the kernels is shown
in Fig. 3. The flow field is color-coded, with direction encoded in
hue and speed in saturation. The bottom part of the plot shows
a polar distribution of the flow vectors for the 64 kernels. It is
noteworthy that the pre-trained kernels have a larger sensitivity
for the estimation of vertical motion.

Egomotion from event-based SNN optical flow ICONS ’23, August 1–3, 2023, Santa Fe, NM, USA

Kernel 58 dmin = 1

Hormin histgram

0

0.5

1

Hormax

0

0.5

1

0

0.5

Ver Vermax

0

0.5

0

y
=

 0
.1

7
0 10

D
is

p
la

ce
m

e
n

t

x
=

 1
.9

7

5

Optical flow vector

5 10

5

10

min

 histgram

 histgram histgram

Kernel 58 dmax = 10

(a) SAD fitting

-1

-1

0

1

0 1

(b) Kernel distribution

Figure 3: Optical flow computation from pre-trained kernels:
a) the first two columns plot the histograms of the sum of
intensity values along the horizontal and vertical directions.
d_min and d_max indicate the corresponding kernel with the
minimum and maximum delay. The last column calculates
the sum of absolute differences (blue line) and least squares
fit (red line). b) Color map and polar distribution of the pre-
trained kernels.

(a) Type I (b) Type II (c) LSQ IOC

Figure 4: (a)-(b) Type I and Type II stimulus; (c) Least squares
solution for intersection of constraints. The green arrows
represent local flow vectors. The dotted lines indicate the
constraints. Their intersection in the least squares sense is
indicated by the yellow arrow.

4.2 Full flow
Local flow estimates are combined in the pooling layer to compute
a more compact full flow estimate, similar to how biological sys-
tems integrate local motion information. However, local motion
estimation suffers from the aperture problem, which means that
flow parallel to local edges cannot be observed. To overcome this,
optical flow is pooled across a larger receptive field using different
pooling mechanisms.

Two commonly usedmechanisms are geometric pooling [10] and
intersection of constraints [1]. Geometric pooling computes a vector
average (VA) from the set of flow data values, while intersection of
constraints (IOC) computes a consistent solution compatible with
each individual flow vector. For instance, the IOC solution for two
flow estimates is at the intersection of their constraint lines, which
are perpendicular to the direction of motion (see Fig. 4).

Research in neuroscience has shown that the pooling mechanism
used in the human visual system depends on the type of stimuli
received [5, 31]. Stimuli can be classified into two types: Type I
stimuli have IOC solutions inside the cone described by the flow
vectors, while Type II stimuli have IOC solutions outside this cone.

The VA solution generates a veridical (albeit scaled) estimate of the
velocity vector for Type I stimuli, while it deviates substantially
from the IOC solution for Type II stimuli (see Fig. 4b). However, for
noisy input data from an event camera, the IOC solution may also
deviate substantially from the true value.

To solve the aperture problem for noisy SNN data, we propose
a pooling method that combines both the VA and IOC methods
depending on the type of stimuli received. Our pooling mechanism
assumes that the motion is adequately encoded in the receptive
field, which should be small enough to capture a single general
motion direction and large enough to include responses to different
kernels (different edge directions).
Sliding temporal window: To address the sparseness of local flow
data, we employ a sliding temporal window integration mechanism
at the output of the MS-Conv layer, assuming that flow changes
smoothly over time. This increases the number of local flow vectors
in the receptive field without the need to increase the receptive
field size or the step size 𝜏𝑠 .
Vector average flow: When all local flow vectors in the receptive
field lie in the same orientation bin (as shown in Fig. 3b), we assume
a Type II stimulus and compute the pooling flow using the vector
average method.
Least squares intersection of constraints:When neurons in the
same receptive field fire corresponding to at least two different di-
rection bins, we assume a Type I stimulus and compute the pooling
flow using a least squares solution with robust outlier rejection to
the intersection of constraints as described in section 4.3.
Data richness: If all local flow vectors in the receptive field come
from the same kernel after update the temporal window, we assume
that the observed features are not rich enough to describe motion.
In that case, we choose not to update the pooling for that receptive
field.

4.3 Least squares solution for the intersection
of constraints

The problem of computing the least squares intersection of con-
straints can be formulated as follows: given 𝑛 normal flow vec-
tors v𝑖 = (𝑢𝑖 , 𝑣𝑖), the goal is to find the flow vector whose con-
straint line minimizes the intersection error of all constraint lines.
A point (𝑥,𝑦) in any given constraint line 𝑙𝑖 must satisfy the equa-
tion −𝑢𝑖𝑥 − 𝑣𝑖𝑦 + (𝑢2

𝑖
+ 𝑣2

𝑖
) = 0.

To find the point 𝑋 in the constraint line closest to all 𝑛 lines 𝐴
in the least squares sense, we can represent 𝐴 as a matrix and solve
for the eigenvector associated with the smallest eigenvalue of 𝐴𝑇𝐴
subject to the constraint that |𝑋 | = 1. Specifically, we have:

𝐴 =

−𝑢1 −𝑣1 𝑢2

1 + 𝑣2
1

.

.

.
.
.
.

.

.

.

−𝑢𝑛 −𝑣𝑛 𝑢2
𝑛 + 𝑣2

𝑛

 𝑋 =

𝑥

𝑦

1

 (1)

Our least squares solution for the intersection of constraints is
exemplified in Figure 4c. To obtain optimal results, the method
requires local flow estimates from different directions. Furthermore,
the method is robust to the presence of flow vectors with similar
direction and different magnitudes since the quantity being min-
imized is the squared sum of the perpendicular distance to each
constraint line, not the intersection point of all constraints.

ICONS ’23, August 1–3, 2023, Santa Fe, NM, USA Yi Tian and Juan Andrade-Cetto

5 EGOMOTION FROM OPTICAL FLOW
5.1 Motion field of a static scene
Up to this point, we have an array of full flow estimates at the
output of the pooling layer from which to compute egomotion. We
resort to the Longuet-Higgins model [17] independently to com-
pute rotational and translational (although scale) velocity estimates
that are robust to outliers. To provide a complete understanding
of the process, let’s review the technique. To project a 3D point
P = (𝑋,𝑌, 𝑍)𝑇 onto an ideal pinhole camera with focal length 𝑓 , we
have: p = (𝑥,𝑦)𝑇 = (𝑓 𝑋/𝑍, 𝑓 𝑌/𝑍)𝑇 . Taking the time derivative of
p gives the relation between the velocity V = (𝑉𝑥 ,𝑉𝑦,𝑉𝑧)𝑇 of point
P and the flow vector v = (𝑢, 𝑣, 0)𝑇 at p: v = 𝑓 (𝑍V−𝑉𝑧P)/𝑍 2 . To ex-
press the relation between P and the moving camera’s translational
and angular velocities, T = (𝑇𝑥 ,𝑇𝑦,𝑇𝑧)𝑇 and 𝝎 = (𝜔𝑥 , 𝜔𝑦, 𝜔𝑧)𝑇 ,
when 𝑃 is static in the scene, we have: V = −(T + 𝝎 × P) . By
plugging V into v, we get the motion flow at pixel 𝑖 for a moving
camera with velocities T and 𝝎:[

𝑢𝑖
𝑣𝑖

]
=

[
− 𝑓

𝑍𝑖
0 𝑥𝑖

𝑍𝑖

0 − 𝑓

𝑍𝑖

𝑦𝑖
𝑍𝑖

]
︸ ︷︷ ︸

𝐴T𝑖

[
𝑇𝑥
𝑇𝑦
𝑇𝑧

]
+

𝑥𝑖 𝑦𝑖
𝑓

− 𝑓 2+𝑥2
𝑖

𝑓
𝑦𝑖

𝑓 2+𝑦2
𝑖

𝑓
− 𝑥𝑖 𝑦𝑖

𝑓
−𝑥𝑖

︸ ︷︷ ︸
𝐴𝝎𝑖

[
𝜔𝑥

𝜔𝑦

𝜔𝑧

]
(2)

Note that only the translational component is depth-dependent. If
we know the scene depth 𝑍𝑖 in at least three non-collinear flow
field locations, one can estimate translational and rotational camera
velocities. Otherwise, egomotion can only be determined up to a
scale factor.

5.2 Pure rotational motion
To estimate angular velocities for pure rotation when the scene
points are in front of the camera, we can use Eq. 2 to solve a linear
system via least squares with at least two image points and their
corresponding flow components:

𝐴𝝎1
.
.
.

𝐴𝝎𝑛

[
𝝎
]
=

v1
.
.
.

v𝑛

 (3)

5.3 Pure translational motion
In cases where depth information is available, both translational
and rotational velocities can be estimated. However, without depth
information at flow vector locations, only the direction of the trans-
lational velocity can be determined. In such cases, the vanishing
point (focus of expansion or contraction) can be used to estimate the
direction of flow. The vanishing point represents the point where
the 3D velocity vector T intersects the image plane (see Fig.5). The
3D coordinates of the image point p3𝐷 = (𝑥,𝑦, 𝑓)𝑇 , the flow vector
v = (𝑢, 𝑣, 0)𝑇 , and the linear camera velocity T are coplanar, i.e.,
(p3𝐷 × v)𝑇T = 0. By using at least two image points and their
corresponding flow vectors, a linear system can be constructed

HT =

(p3𝐷 1 × v1)𝑇

.

.

.

(p3𝐷𝑛 × v𝑛)𝑇

 T = 0 (4)

and the translational direction can be estimated by constraining the
estimate of T to have unit magnitude and choosing the eigenvector
corresponding to the smallest eigenvalue of H𝑇H [6].

Figure 5: Camera velocity as a consequence of scene point
projections and their flow vectors.

5.3.1 RANSAC for robust estimation. The full flow output may
include noisy values, which can lead to errors in the estimation. To
address this issue, we propose a RANSAC-based outlier rejection
algorithm for robust estimation of the egomotion components. The
algorithm considers both endpoint error (EE) and angle error (AE)
between the input flow vectors v𝑖 and the model flow vectors v̄𝑖 .
The model flow vectors are computed using Eq. 2 and the model
estimates T̄ and �̄�.

𝐸𝐸𝑖 = ∥v̄𝑖 − v𝑖 ∥ , 𝐴𝐸𝑖 = cos−1 v̄𝑇
𝑖
v𝑖

∥v̄𝑖 ∥∥v𝑖 ∥
. (5)

6 EXPERIMENTS
6.1 Datasets and implementation details
To evaluate our method, we generated synthetic datasets using
the planar scene render of the ESIM simulator [27], using two
patterns: a checkerboard and a windmill. The planar scene was
positioned 1 meter high in the camera reference frame, and the
camera intrinsic parameters were (200, 200, 120, 90). We first tested
our method on constant roll rotation at a speed similar to that used
for training, followed by simulated constant diagonal translational
motion perpendicular to the principal axis at 1 meter depth. We
also validated the system with multiple 3-axis rotation datasets, and
for translational motion with unknown depth, we used a simple 3D
scene involving depth variations.

We implemented our method in C++ using the cuSNN library
and ran all tests with a simulation step size of 1 𝑚𝑠 on 500𝑚𝑠 data
sequences on a desktop equipped with an Intel(R) Core(TM) i7-
7700 CPU and a NVIDIA Quadro K420 GPU. The SNN architecture
and RANSAC parameters are listed in Table 1. The input layer size
was scaled by 𝑠 = 4. The optimal pooling receptive field size 𝑟 𝑓
depends on the pattern texture and the assumption of consistent
motion. Increasing 𝑟 𝑓 would provide more accurate flow estimates
by including more edges in the estimation of each flow component,
while a smaller size would produce more flow vectors in the pooling
layer, allowing for more robustness in the egomotion estimation.
We set the 𝑟 𝑓 size to 7 × 7.

We also modified some parameters of the original SNN. Since
𝛼 is an inhibition term in the neural network that’s related to the
firing time, we set a small value to avoid losing important events in
the motion pattern. However, to compensate for the larger amount
of firings, we increased the firing threshold 𝑉𝑡ℎ and decay time
constant 𝜏𝑚 .

Egomotion from event-based SNN optical flow ICONS ’23, August 1–3, 2023, Santa Fe, NM, USA

Table 1: Parameters used for the windmills dataset tests

layer 𝑉𝑡ℎ 𝜏𝑚 𝛼 rf bins 𝑊

𝑚𝑉 𝑚𝑠 − - − 𝑚𝑠

MS-Conv 0.8 40 0.1 5 × 5 − −
Pooling 0 5 1 7 × 7 8 10

(a) Parameters for SNN

motion steps inliers 𝐸𝐸 𝐴𝐸

type − − pixels 𝑟𝑎𝑑

translation 20 7 22 0.18
rotation 20 8 50 0.5

(b) Parameters for RANSAC

0°

45°

90°

135°

180°

225°

270°

315°

0

1000

2000

F
ir

in
g

 t
im

e
s/

0
.5

s

0°

45°

90°

135°

180°

225°

270°

315°

0

1000

2000

F
ir

in
g

 t
im

e
s/

0
.5

s

Checkerboard pattern MS-Conv layer neurons Pooling layer neurons

0°

45°

90°

135°

180°

225°

270°

315°

0

500

1000

1500

F
ir

in
g

 t
im

e
s/

0
.5

s

0°

45°

90°

135°

180°

225°

270°

315°

0

500

1000

1500

F
ir

in
g

 t
im

e
s/

0
.5

s

Windmills pattern MS-Conv layer neurons Pooling layer neurons

Figure 6: Polar histograms of neurons firing counts in theMS-
Conv and pooling layers for pure translation motion tests.
The red arrow shows the average flow direction.

6.2 Pooling flow evaluation
In Fig. 6, we present the response of the MS-Conv layer neurons and
pooling layer neurons for the constant translational motion test,
where the ground truth flow direction is 225◦. While the checker-
board pattern contains only horizontal and vertical edges, the wind-
mill pattern includes edges with eight different orientations. For
the checkerboard pattern, there are no normal flow vectors in the
MS-Conv layer that match the motion direction. This is because
the training sequence did not have kernels that correspond to the
executed motion direction, resulting in a deviation of 𝑇𝑦 compared
to 𝑇𝑥 due to unequal distribution of kernels describing different
motions. Nevertheless, the pooling layer provides satisfactory full
flow results in both cases, despite the limitations of the available
kernels.

Table 2 reports the evaluation of the average endpoint error (AEE)
and average angle error (AAE) between the pooling flow and the
ground truth flow. Our method is compared with EV-FlowNet [33],
and outliers flows with EE larger than 3 pixels and 5% of their
magnitude are indicated. For the pure translation case, our results
outperform those of EV-FlowNet under the same experimental con-
ditions. This is due to the high contrast synthetic images used in our
test datasets, which contain relatively dense event bursts compared
to the natural scene datasets that EV-FlowNet was trained with.
In an attempt to improve EV-FlowNet’s performance for the trans-
lation case, we either increased frame windows or decreased the
speed of motion. The results improved but were still less accurate
than ours, highlighting the advantage of the firing patterns in the
MS-Conv layer better matching those of the pre-trained kernels in
our case.

Table 2: Results for the computation of pooling flowwith and
without RANSAC compared to EV-FlowNet on the windmills
dataset for pure roll rotation and pure diagonal translation.

Windmills pure roll rotation Windmills pure translation

AEE % Outliers AAE AEE % Outliers AAE

EV-FlowNet [33] dt = 1 frame 1.67 8.73 - 2.44 29.03 -
EV-FlowNet [33] dt = 2 frames 1.77 12.04 -
EV-FlowNet [33] half speed 1.71 10.37 -

our method without RANSAC 1.20 2.94 0.33 0.48 0 0.17
our method with RANSAC 0.82 0 0.27 0.40 0 0.14

(a) Pattern (b) Input (c) Normal flow (d) Full flow

Figure 7: Pooling flow results for pure rotation: (a) windmills
pattern; (b) on and off polarity in the input pattern; (c) flow
output from the MS-Conv layer, normalized and color coded
according to Fig. 3b; and (d) full flow from the pooling layer
with RANSAC inliers shown with random color and outliers
shown in white.

250 300 350 400 450 500

Time [ms]

-0.5

0

0.5

1

1.5

A
n
g
u
la

r
v
e
lo

c
it
y
 [
ra

d
/s

]

Rx-ransac

Ry-ransac

Rz-ransac

Rx-lsq

Ry-lsq

Rz-lsq

Rx
gt

Ry
gt

Rz
gt

(a) Pure rotation

250 300 350 400 450 500

Time [ms]

-0.5

0

0.5

L
in

e
a
r

v
e
lo

c
it
y
 [
m

/s
]

Tx-ransac

Ty-ransac

Tz-ransac

Tx-lsq

Ty-lsq

Tz-lsq

Tx
gt

Ty
gt

Tz
gt

(b) Pure translation

Figure 8: Motion estimation results for pure rotation and
pure translation in a 500ms interval in the windmills dataset.
The results with and without RANSAC are shown with solid
and dashed dot lines, respectively. Ground-truth values are
plotted with dotted lines.

6.3 Pure rotation and pure translation on a
planar scene

The results of the different layers in the SNN are depicted in Fig.7
for the case of constant fronto-parallel rotation with the windmill
pattern. It is worth noting that in the full flow plot (Fig.7d), the
flow vectors located in the center of the image have smaller ground
truth magnitudes than those of the best matching kernels trained,
leading to outliers.

The estimation results of both angular velocity and translation
direction on the entire 500 ms sequence of the windmills dataset
are shown in Fig.8 and Table 3. Depending on the number of bins
in the pooling layer, the IOC method proposed may fail to produce
accurate optical flow estimates, as exemplified in the rotation plot
at step 266. However, this situation can be easily corrected with the
aid of our RANSAC module. Additionally, the results in the table
are consistent with the observation made in Sec.6.2 regarding the
unequal distribution of kernels.

ICONS ’23, August 1–3, 2023, Santa Fe, NM, USA Yi Tian and Juan Andrade-Cetto

Table 3: Motion estimation results for pure rotation and pure
translation in a 500 ms interval in the windmills dataset.

Windmills pure roll rotation Windmills pure translation

𝑅𝑥 𝑟𝑎𝑑/𝑠 𝑅𝑦 𝑟𝑎𝑑/𝑠 𝑅𝑧 𝑟𝑎𝑑/𝑠 𝑇𝑥 𝑚/𝑠 𝑇𝑦 𝑚/𝑠 𝑇𝑧 𝑚/𝑠
true value 0 0 0.5409 0.18 - 0.18 0

mean estimate 0.0101 0.0333 0.5625 0.172 - 0.218 0.0128
RMSD 0.0381 0.0187 0.0425 0.0131 0.0162 0.0294
RMSE 0.0303 0.0346 0.0357 0.0156 0.0413 0.0321

6.4 3D rotations
To evaluate the effectiveness of our method in estimating 3D ro-
tations, we created a dataset of the windmills pattern subject to
constant angular velocities around the three axes. We varied the
time-scale of the events to generate a range of angular velocities.
We then adjusted the maximum delay for all pre-trained kernels
and tested the method for different ranges of angular velocities. We
also scaled other parameters such as the time delay, the sliding in-
tegration temporal window, and the RANSAC thresholds according
to the corresponding scale factor. Fig. 9 (a and b) show the mean
relative error for the pure roll and 3-axes rotation tests with varying
angular velocities in the windmills dataset, and (c) for SO(3) with
scaled kernels in the 19 natural scene sequences from the dataset
in [11]. We observed that slower rotations led to larger errors since
they are more likely to cause erroneous firing of the neurons. Our
method performed better on pure roll rotation than on SO(3) rota-
tion, as the kernels were trained from similar motion patterns and
lacked richness to explain other types of motion. Additionally, we
found that the MS-Conv layer neurons had better direction selec-
tivity than speed selectivity, which is consistent with the findings
of [24].

To compare our results with the only other work in the literature
that attempted 3D rotation estimation with SNNs [11], we tested
on their synthetic dataset. The dataset contains 100 ms sequences
generated from panorama images, with slightly varying random
angular velocities. Without fine-tuning the parameters, our method
worked on approximately 19 percent of the 100 sequences randomly
selected from the test set. We scaled the angular velocities between
0.5-2.5 rad/s, and decreased the input scale by a factor of 2 and the
receptive field for the pooling flow to 5 to ensure sufficient optical
flow vectors in the output. Fig.9c shows the median relative error
for all sequences, which ranged from 0.4 to 0.6. This value is slightly
higher than the results reported in [11] for angular velocities be-
tween 0◦ and 120◦ (see the last block in Table 4). In the Table, the
first column in each set indicates the speeds with smaller relative
errors (minima in the plots), and the second column indicates the
average relative error ∥�̄� − 𝜔𝑔𝑡 ∥ · ∥𝜔𝑔𝑡 ∥−1 for the entire speed
sensitivity ranges shown. We also present the results for some of
these sequences in Fig. 10.

Furthermore, we tested their pre-trained model in our windmills
rotation dataset and found that the median relative error ranged
from 0.7 to 0.9. These poor results indicate the limited generalization
ability of the optical flow model used, which had difficulty estimat-
ing 3D rotation in sequences with speeds and patterns different
from those used to train the MS-Conv kernels.

0 2 4 6

Roll angular velocity [rad/s]

0

0.2

0.4

0.6

0.8

1

M
e

d
ia

n
 r

e
la

ti
v

e
 e

rr
o

r

Scale 0.1

Scale 0.25

Scale 0.5

Scale 1

(a) Roll / windmills

0 2 4 6 8

Angular velocity [rad/s]

0.2

0.4

0.6

0.8

1

M
e

d
ia

n
 r

e
la

ti
v

e
 e

rr
o

r

Scale 0.1

Scale 0.25

Scale 0.5

Scale 1

(b) SO(3) / windmills

0.5 1 1.5 2 2.5

Angular velocity [rad/s]

0.2

0.4

0.6

0.8

1

M
e

d
ia

n
 r

e
la

ti
v

e
 e

rr
o

r

Scale 0.1

(c) SO(3) / [11]

Figure 9: Rotation estimation for varying angular velocities
and scaled filters.

Table 4: Rotation estimation results for kernels scaled at 0.1
(blue lines in Fig. 9).

Motion type Roll SO(3)

Dataset windmills windmills natural scene [11]

ours best ours range/mean ours best ours range/mean [11] ours range/mean [11]

�̄� 𝑟𝑎𝑑/𝑠 3.838 3.245 - 5.891 3.938 1.890 - 7.876 - 0.91 - 2.312 -
relative error 0.137 0.377 0.319 0.482 0.977 0.560 0.209

relative error-LSQ 0.120 0.511 0.585 4.274 - 3.683 -
RMSE 0.925 1.950 1.255 1.772 2.959 0.849 0.993

Table 5: Translational direction estimation for 2D and 3D
scenes.

Motion type Linear translation Linear translation

Dataset Windmills planar 3D checkerboard

Normalized direction 𝑇𝑥 𝑇𝑦 𝑇𝑧 𝑇𝑥 𝑇𝑦 𝑇𝑧

Ground truth 0.3208 -0.3208 -0.8912 0.3208 -0.3208 -0.8912
Mean 0.3027 -0.3530 -0.8821 0.2749 -0.2801 -0.9151
RMSD 0.0511 0.0473 0.0305 0.0571 0.0667 0.0304
RMSE 0.0541 0.0571 0.0318 0.0732 0.0780 0.0386

6.5 3D translation direction
We generated two datasets with a planar scene of the windmill
pattern and a 3D scenemade up of checkerboard pattern boxes, both
moving at a constant linear velocity in the camera reference frame.
Using the method described in Section 5.3 and without any depth
information, we estimated the normalized translational velocity for
both datasets.

Figure 11 illustrates the simulated 3D scene and its corresponding
optical flow. The camera’s direction of motion intersects the image
plane at the vanishing point. We normalized the estimates and
compared them to the ground-truth values in Table 5. However, our
pooling flowmethod struggles to accurately estimate themagnitude
of flow vectors near the vanishing point, where the magnitude of
flow vectors is small. Moreover, for the 3D scene, flow vectors
are also difficult to estimate near object boundaries, making the
estimation of motion direction less accurate for cluttered 3D scenes.
As shown in the table, the mean, RMSD, and RMSE values confirm
this observation.

7 DISCUSSION
In this study, we investigated the potential of using pre-trained
SNNs for egomotion estimation on event data.We tested ourmethod
on various datasets involving pure translations and rotations on
both 2D and 3D planes. We assessed the SNN’s ability to generalize
by using pre-trained kernels to compute the flow field.

Our approach’s performance is constrained by the pre-trained
kernel’s statistics. The main obstacle to testing more complex mo-
tion sequences than those trained or in more complex datasets is

Egomotion from event-based SNN optical flow ICONS ’23, August 1–3, 2023, Santa Fe, NM, USA

Figure 10: Angular velocity estimation for the sequences in [11]. 1st row: input events. color shows polarity (yellow is for
overlap of positive and negative events in the same sampling interval). 2nd row: color-coded optical flow. 3rd row: pooling
flow output (green - RANSAC inliers; red - outliers; light blue - ground truth; light yellow - estimated model) with green and
red indicating inliers and outliers picked by the RANSAC algorithm, ground truth flow in light blue, and estimated RANSAC
model flow in light yellow. Last row: angular velocity estimation throughout the 100 ms simulation. (RGB - 𝑥𝑦𝑧; dotted line -
ground truth). Red, green and blue indicate rotation about the 𝑥 , 𝑦 and 𝑧 axes respectively. Ground truth values in dotted lines.
Motion estimation starts at 20ms since the MS-layer needs a delay period to produce a reliable output.

(a) 3D scene with varying depths of checker-
board pattern boxes

x

y

(b) Ground truth simulated translation
flow

x

y

Pooling flow

FoC

Trans direction

(c) Pooling translation flow for a 3D scene

Figure 11: Translation flow for a 3D scene: (a) 3D scene used for simulation; (b) simulated ground truth flow; and (c) estimated
pooling flow. The red point represents the focus of contraction, i.e., the location in the image where the camera motion direction
intersects the image plane.

ICONS ’23, August 1–3, 2023, Santa Fe, NM, USA Yi Tian and Juan Andrade-Cetto

the lack of available flow vectors in the pre-trained kernel set. Addi-
tionally, since the SNN was trained in a fully unsupervised manner
from a synthetic sequence, noise affects the read-out mechanism
for the pre-trained model, and erroneous neuron firing can occur
during the inference phase.

The poor speed selectivity of the MS-Conv layer neurons poses
a challenge to our IOC method for full flow estimation since it is
sensitive to variations in the normal flow’s magnitude with similar
directions. Moreover, the sparse data produced by event cameras
results in flow vectors that are texture and motion-dependent. We
balanced simulation speed, accuracy, and sparsity in tuning the SNN,
implementing a pooling technique with robust motion estimation
to cope with noise and input sparsity. Our method assumes rigid
motion only. Despite the pre-trained kernel’s inherent limitations
in flow estimation, the method produced reliable results on tests
involving pure rotational and translational egomotion. However,
it does not generalize favorably for sequences and motion speeds
different from those trained.

Our work was based on the state-of-the-art at the moment we
initialized the project. Rapid development has taken place in the
neuromorphic field in the recent years. In future studies, we will
explore novel architectures and learning methods to address this
problem [14], as well as utilize richer datasets from real-world
scenes for both learning and validation.

ACKNOWLEDGMENTS
Thiswork received support from projects EBCON (PID2020-119244GB-
I00) and AUDEL (TED2021-131759A-I00) funded by MCIN/ AEI/
10.13039/ 501100011033 and by the "European Union NextGenera-
tionEU/PRTR"; the Consolidated Research Group RAIG (2021 SGR
00510) of the Departament de Recerca i Universitats de la Generali-
tat de Catalunya; and by an FI AGAUR PhD grant to Yi Tian.

REFERENCES
[1] Edward H. Adelson and J. Anthony Movshon. 1982. Phenomenal coherence of

moving visual patterns. Nature 300, 5892 (1982), 523–525.
[2] Himanshu Akolkar, Stefano Panzeri, and Chiara Bartolozzi. 2015. Spike time

based unsupervised learning of receptive fields for event-driven vision. In IEEE
Int. Conf. Robotics Autom. Seattle, WA, 4258–4264.

[3] Ignacio Alzugaray and Margarita Chli. 2020. HASTE: Multi-hypothesis asynchro-
nous speeded-up tracking of events. In British Mach. Vis. Conf. Virtual.

[4] Thomas Barbier, Céline Teulière, and Jochen Triesch. 2021. Spike timing-based
unsupervised learning of orientation, disparity, and motion representations in a
spiking neural network. In 2021 IEEE CVPRWorkshops. Nashville, TN, 1377–1386.

[5] Linda Bowns and David Alais. 2006. Large shifts in perceived motion direction
reveal multiple global motion solutions. Vision Research 46, 8-9 (2006), 1170–1177.

[6] Anna R. Bruss and Berthold K.P. Horn. 1983. Passive navigation. Comput. Vis.
Graph. Image Process. 21, 1 (1983), 3–20.

[7] William Chamorro, Juan Andrade-Cetto, and Joan Solà. 2020. High-speed event
camera trackng. In British Mach. Vis. Conf. Virtual.

[8] Guillaume Debat, Tushar Chauhan, Benoit R. Cottereau, Timothée Masquelier,
Michel Paindavoine, and Robin Baures. 2021. Event-based trajectory prediction
using spiking neural networks. Front. Comput. Neurosci. 15 (2021).

[9] Lei Deng, Kai Huang, Yannan Xing, Gaetano Di Caterina, and John Soraghan.
2020. A new spiking convolutional recurrent neural network (SCRNN) with
applications to event-based hand gesture recognition. Front. Neurosci. 14 (2020),
590164.

[10] Walter Gander, Gene H. Golub, and Rolf Strebel. 1994. Least-squares fitting of
circles and ellipses. BIT Num. Math. 34, 4 (1994), 558–578.

[11] Mathias Gehrig, Sumit Bam Shrestha, Daniel Mouritzen, and Davide Scaramuzza.
2020. Event-based angular velocity regression with spiking networks. In IEEE
Int. Conf. Robotics Autom. Paris, 4195–4202.

[12] Germain Haessig, Andrew Cassidy, Rodrigo Alvarez, Ryad Benosman, and Gar-
rick Orchard. 2018. Spiking optical flow for event-based sensors using IBM’s

TrueNorth neurosynaptic system. IEEE Trans. Biomed. Circ. Syst. 12, 4 (2018),
860–870.

[13] Germain Haessig, Francesco Galluppi, Xavier Lagorce, and Ryad Benosman. 2019.
Neuromorphic networks on the SpiNNaker platform. In IEEE Int. Conf. Artif.
Intell. Circuits Syst. Taiwan, 86–91.

[14] Jesse Hagenaars, Federico Paredes-Vallés, and Guido de Croon. 2021. Self-
Supervised Learning of Event-Based Optical Flow with Spiking Neural Networks.
Conf. Neural Inf. Process. Syst. 34 (2021).

[15] Chankyu Lee, Adarsh Kosta, Alex Zihao Zhu, Kenneth Chaney, Kostas Daniilidis,
and Kaushik Roy. 2020. Spike-FlowNet: Event-based optical flow estimation
with energy-efficient hybrid neural networks. In Eur. Conf. Comput. Vis. Springer,
Glasgow, UK, 366–382.

[16] Chankyu Lee, Adarsh Kumar Kosta, and Kaushik Roy. 2021. Fusion-FlowNet:
Energy-efficient optical flow estimation using sensor fusion and deep fused
spiking-analog network architectures. arXiv:2103.10592

[17] Hugh C. Longuet-Higgins and K. Prazdny. 1980. The interpretation of a moving
retinal image. Proc. Royal Soc. London - Biological Sci. 208, 1173 (1980).

[18] Yihao Luo, Min Xu, Cahiong Yuan, Xiang Cao, Liangqi Zhang, Yan Xu, Yianjiang
Wang, and Qi Feng. 2021. SiamSNN: Siamese spiking neural networks for energy
efficient object tracking. In Int. Conf. Artif. Neural Netw. Springer, Bratislava,
Slovakia, 182–194.

[19] Yihao Luo, Quanzheng Yi, Tianjiang Wang, Ling Lin, Yan Xu, Jing Zhou, Caihong
Yuan, Jingjuan Guo, Ping Feng, and Qi Feng. 2019. A spiking neural network
architecture for object tracking. In Int. Conf. Image and Graphics. Springer, Beijing,
118–132.

[20] Kimberly McGuire, Guido de Croon, Christophe de Wagter, Bart Remes, Karl
Tuyls, and Hilbert Kappen. 2016. Local histogram matching for efficient optical
flow computation applied to velocity estimation on pocket drones. In IEEE Int.
Conf. Robotics Autom. Stockholm, 3255–3260.

[21] Kimberly McGuire, Guido De Croon, Christophe De Wagter, Karl Tuyls, and
Hilbert Kappen. 2017. Efficient optical flow and stereo vision for velocity esti-
mation and obstacle avoidance on an autonomous pocket drone. IEEE Robotics
Autom. Lett. 2, 2 (2017), 1070–1076.

[22] Nico Messikommer, Daniel Gehrig, Antonio Loquercio, and Davide Scaramuzza.
2020. Event-based asynchronous sparse convolutional networks. In Eur. Conf.
Comput. Vis. Springer, Glasgow, 415–431.

[23] Garrick Orchard and Ralph Etienne-Cummings. 2014. Bioinspired visual motion
estimation. Proc. IEEE 102, 10 (2014), 1520–1536.

[24] Federico Paredes-Vallés, Kirk Yannick Willehm Scheper, and Guido De Croon.
2020. Unsupervised learning of a hierarchical spiking neural network for optical
flow estimation: From events to global motion perception. IEEE Trans. Pattern
Anal. Mach. Intell. 42, 8 (2020), 2051–2064.

[25] Francesca Peveri, Simone Testa, and Silvio P Sabatini. 2021. A cortically-inspired
architecture for event-based visual motion processing: From design principles to
real-world applications. In IEEE CVPR Workshops. Nashville, TN, 1395–1402.

[26] Ulysse Rançon, Javier Cuadrado-Anibarro, Benoit R. Cottereau, and Timothée
Masquelier. 2021. StereoSpike: Depth learning with a spiking neural network. In
Spiking Neural Netw. Universal Funct. Approx. Workshop. Virtual.

[27] Henri Rebecq, Daniel Gehrig, and Davide Scaramuzza. 2018. ESIM: An open
event camera simulator. In 2nd Conf. Robot Learning, Vol. 87. Zürich, Switzerland,
969–982.

[28] Davide Scaramuzza and Friedrich Fraundorfer. 2011. Visual odometry. IEEE
Robotics Autom. Mag. 18, 4 (2011), 80–92.

[29] Timo Stoffregen, Guillermo Gallego, Tom Drummond, Lindsay Kleeman, and
Davide Scaramuzza. 2019. Event-based motion segmentation by motion compen-
sation. In IEEE Int. Conf. Comput. Vis. Seoul, 7244–7253.

[30] Chenxi Ye, Anton Mitrokhin, Cornelia Mermüller, James A. Yorke, and Yiannis
Aloimonos. 2020. Unsupervised learning of dense optical flow, depth and ego-
motion with event-based sensors. In IEEE/RSJ Int. Conf. Intell. Robots Syst. Las
Vegas, NV, 5831–5838.

[31] Christopher Yo and Hugh R. Wilson. 1992. Perceived direction of moving two-
dimensional patterns depends on duration, contrast and eccentricity. Vision
Research 32, 1 (1992), 135–147.

[32] Jiqing Zhang, Kai Zhao, Bo Dong, Yingkai Fu, Yuxin Wang, Xin Yang, and Baocai
Yin. 2021. Multi-domain collaborative feature representation for robust visual
object tracking. The Visual Computer 37 (2021), 2671–2683.

[33] Alex Zhu, Liangzhe Yuan, Kenneth Chaney, and Kostas Daniilidis. 2018. EV-
FlowNet: Self-supervised optical flow estimation for event-based cameras. In
Robotics Sci. Syst. Conf. Pittsburgh, PA.

[34] Alex Zihao Zhu, Liangzhe Yuan, Kenneth Chaney, and Kostas Daniilidis. 2018.
Unsupervised event-based optical flow using motion compensation. In ECCV
Workshops. Munich, 711–714.

[35] Alex Zihao Zhu, Liangzhe Yuan, Kenneth Chaney, and Kostas Daniilidis. 2019.
Unsupervised event-based learning of optical flow, depth and egomotion. In IEEE
Conf. Comput. Vis. Pattern Recognit. Long Beach, CA, 989–997.

[36] Lin Zhu, Siwei Dong, Jianing Li, Tiejun Huang, and Yonghong Tian. 2020. Retina-
like visual image reconstruction via spiking neural model. In IEEE Conf. Comput.
Vis. Pattern Recognit. Seattle, WA, 1438–1446.

https://arxiv.org/abs/2103.10592

	Abstract
	1 Introduction
	2 Related work
	3 Network architecture
	4 Optical flow estimation
	4.1 Local flow
	4.2 Full flow
	4.3 Least squares solution for the intersection of constraints

	5 Egomotion from optical flow
	5.1 Motion field of a static scene
	5.2 Pure rotational motion
	5.3 Pure translational motion

	6 Experiments
	6.1 Datasets and implementation details
	6.2 Pooling flow evaluation
	6.3 Pure rotation and pure translation on a planar scene
	6.4 3D rotations
	6.5 3D translation direction

	7 Discussion
	Acknowledgments
	References

