25,780 research outputs found

    Equilibrium statistical mechanics on correlated random graphs

    Full text link
    Biological and social networks have recently attracted enormous attention between physicists. Among several, two main aspects may be stressed: A non trivial topology of the graph describing the mutual interactions between agents exists and/or, typically, such interactions are essentially (weighted) imitative. Despite such aspects are widely accepted and empirically confirmed, the schemes currently exploited in order to generate the expected topology are based on a-priori assumptions and in most cases still implement constant intensities for links. Here we propose a simple shift in the definition of patterns in an Hopfield model to convert frustration into dilution: By varying the bias of the pattern distribution, the network topology -which is generated by the reciprocal affinities among agents - crosses various well known regimes (fully connected, linearly diverging connectivity, extreme dilution scenario, no network), coupled with small world properties, which, in this context, are emergent and no longer imposed a-priori. The model is investigated at first focusing on these topological properties of the emergent network, then its thermodynamics is analytically solved (at a replica symmetric level) by extending the double stochastic stability technique, and presented together with its fluctuation theory for a picture of criticality. At least at equilibrium, dilution simply decreases the strength of the coupling felt by the spins, but leaves the paramagnetic/ferromagnetic flavors unchanged. The main difference with respect to previous investigations and a naive picture is that within our approach replicas do not appear: instead of (multi)-overlaps as order parameters, we introduce a class of magnetizations on all the possible sub-graphs belonging to the main one investigated: As a consequence, for these objects a closure for a self-consistent relation is achieved.Comment: 30 pages, 4 figure

    A Generalized Epidemic Process and Tricritical Dynamic Percolation

    Full text link
    The renowned general epidemic process describes the stochastic evolution of a population of individuals which are either susceptible, infected or dead. A second order phase transition belonging to the universality class of dynamic isotropic percolation lies between endemic or pandemic behavior of the process. We generalize the general epidemic process by introducing a fourth kind of individuals, viz. individuals which are weakened by the process but not yet infected. This sensibilization gives rise to a mechanism that introduces a global instability in the spreading of the process and therefore opens the possibility of a discontinuous transition in addition to the usual continuous percolation transition. The tricritical point separating the lines of first and second order transitions constitutes a new universality class, namely the universality class of tricritical dynamic isotropic percolation. Using renormalized field theory we work out a detailed scaling description of this universality class. We calculate the scaling exponents in an ϵ\epsilon-expansion below the upper critical dimension dc=5d_{c}=5 for various observables describing tricritical percolation clusters and their spreading properties. In a remarkable contrast to the usual percolation transition, the exponents β\beta and β{\beta}^{\prime} governing the two order parameters, viz. the mean density and the percolation probability, turn out to be different at the tricritical point. In addition to the scaling exponents we calculate for all our static and dynamic observables logarithmic corrections to the mean-field scaling behavior at dc=5d_c=5.Comment: 21 pages, 10 figures, version to appear in Phys. Rev.

    Balanced Symmetric Functions over GF(p)GF(p)

    Get PDF
    Under mild conditions on n,pn,p, we give a lower bound on the number of nn-variable balanced symmetric polynomials over finite fields GF(p)GF(p), where pp is a prime number. The existence of nonlinear balanced symmetric polynomials is an immediate corollary of this bound. Furthermore, we conjecture that X(2t,2t+1l1)X(2^t,2^{t+1}l-1) are the only nonlinear balanced elementary symmetric polynomials over GF(2), where X(d,n)=i1<i2<...<idxi1xi2...xidX(d,n)=\sum_{i_1<i_2<...<i_d}x_{i_1} x_{i_2}... x_{i_d}, and we prove various results in support of this conjecture.Comment: 21 page

    Unwrapping phase fluctuations in one dimension

    Full text link
    Correlation functions in one-dimensional complex scalar field theory provide a toy model for phase fluctuations, sign problems, and signal-to-noise problems in lattice field theory. Phase unwrapping techniques from signal processing are applied to lattice field theory in order to map compact random phases to noncompact random variables that can be numerically sampled without sign or signal-to-noise problems. A cumulant expansion can be used to reconstruct average correlation functions from moments of unwrapped phases, but points where the field magnitude fluctuates close to zero lead to ambiguities in the definition of the unwrapped phase and significant noise at higher orders in the cumulant expansion. Phase unwrapping algorithms that average fluctuations over physical length scales improve, but do not completely resolve, these issues in one dimension. Similar issues are seen in other applications of phase unwrapping, where they are found to be more tractable in higher dimensions.Comment: 14 pages, 7 figures. arXiv admin note: text overlap with arXiv:1806.0183
    corecore