411 research outputs found

    Exploiting Full-duplex Receivers for Achieving Secret Communications in Multiuser MISO Networks

    Full text link
    We consider a broadcast channel, in which a multi-antenna transmitter (Alice) sends KK confidential information signals to KK legitimate users (Bobs) in the presence of LL eavesdroppers (Eves). Alice uses MIMO precoding to generate the information signals along with her own (Tx-based) friendly jamming. Interference at each Bob is removed by MIMO zero-forcing. This, however, leaves a "vulnerability region" around each Bob, which can be exploited by a nearby Eve. We address this problem by augmenting Tx-based friendly jamming (TxFJ) with Rx-based friendly jamming (RxFJ), generated by each Bob. Specifically, each Bob uses self-interference suppression (SIS) to transmit a friendly jamming signal while simultaneously receiving an information signal over the same channel. We minimize the powers allocated to the information, TxFJ, and RxFJ signals under given guarantees on the individual secrecy rate for each Bob. The problem is solved for the cases when the eavesdropper's channel state information is known/unknown. Simulations show the effectiveness of the proposed solution. Furthermore, we discuss how to schedule transmissions when the rate requirements need to be satisfied on average rather than instantaneously. Under special cases, a scheduling algorithm that serves only the strongest receivers is shown to outperform the one that schedules all receivers.Comment: IEEE Transactions on Communication

    Achieving secrecy without knowing the number of eavesdropper antennas

    Get PDF
    The existing research on physical layer security commonly assumes the number of eavesdropper antennas to be known. Although this assumption allows one to easily compute the achievable secrecy rate, it can hardly be realized in practice. In this paper, we provide an innovative approach to study secure communication systems without knowing the number of eavesdropper antennas by introducing the concept of spatial constraint into physical layer security. Specifically, the eavesdropper is assumed to have a limited spatial region to place (possibly an infinite number of) antennas. From a practical point of view, knowing the spatial constraint of the eavesdropper is much easier than knowing the number of eavesdropper antennas. We derive the achievable secrecy rates of the spatially-constrained system with and without friendly jamming. We show that a non-zero secrecy rate is achievable with the help of a friendly jammer, even if the eavesdropper places an infinite number of antennas in its spatial region. Furthermore, we find that the achievable secrecy rate does not monotonically increase with the jamming power, and hence, we obtain the closed-form solution of the optimal jamming power that maximizes the secrecy rate.Comment: IEEE transactions on wireless communications, accepted to appea

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201

    A Survey of Physical Layer Security Techniques for 5G Wireless Networks and Challenges Ahead

    Get PDF
    Physical layer security which safeguards data confidentiality based on the information-theoretic approaches has received significant research interest recently. The key idea behind physical layer security is to utilize the intrinsic randomness of the transmission channel to guarantee the security in physical layer. The evolution towards 5G wireless communications poses new challenges for physical layer security research. This paper provides a latest survey of the physical layer security research on various promising 5G technologies, including physical layer security coding, massive multiple-input multiple-output, millimeter wave communications, heterogeneous networks, non-orthogonal multiple access, full duplex technology, etc. Technical challenges which remain unresolved at the time of writing are summarized and the future trends of physical layer security in 5G and beyond are discussed.Comment: To appear in IEEE Journal on Selected Areas in Communication

    Secrecy Energy Efficiency of MIMOME Wiretap Channels with Full-Duplex Jamming

    Full text link
    Full-duplex (FD) jamming transceivers are recently shown to enhance the information security of wireless communication systems by simultaneously transmitting artificial noise (AN) while receiving information. In this work, we investigate if FD jamming can also improve the systems secrecy energy efficiency (SEE) in terms of securely communicated bits-per- Joule, when considering the additional power used for jamming and self-interference (SI) cancellation. Moreover, the degrading effect of the residual SI is also taken into account. In this regard, we formulate a set of SEE maximization problems for a FD multiple-input-multiple-output multiple-antenna eavesdropper (MIMOME) wiretap channel, considering both cases where exact or statistical channel state information (CSI) is available. Due to the intractable problem structure, we propose iterative solutions in each case with a proven convergence to a stationary point. Numerical simulations indicate only a marginal SEE gain, through the utilization of FD jamming, for a wide range of system conditions. However, when SI can efficiently be mitigated, the observed gain is considerable for scenarios with a small distance between the FD node and the eavesdropper, a high Signal-to-noise ratio (SNR), or for a bidirectional FD communication setup.Comment: IEEE Transactions on Communication

    Coexistence of RF-powered IoT and a Primary Wireless Network with Secrecy Guard Zones

    Get PDF
    This paper studies the secrecy performance of a wireless network (primary network) overlaid with an ambient RF energy harvesting IoT network (secondary network). The nodes in the secondary network are assumed to be solely powered by ambient RF energy harvested from the transmissions of the primary network. We assume that the secondary nodes can eavesdrop on the primary transmissions due to which the primary network uses secrecy guard zones. The primary transmitter goes silent if any secondary receiver is detected within its guard zone. Using tools from stochastic geometry, we derive the probability of successful connection of the primary network as well as the probability of secure communication. Two conditions must be jointly satisfied in order to ensure successful connection: (i) the SINR at the primary receiver is above a predefined threshold, and (ii) the primary transmitter is not silent. In order to ensure secure communication, the SINR value at each of the secondary nodes should be less than a predefined threshold. Clearly, when more secondary nodes are deployed, more primary transmitters will remain silent for a given guard zone radius, thus impacting the amount of energy harvested by the secondary network. Our results concretely show the existence of an optimal deployment density for the secondary network that maximizes the density of nodes that are able to harvest sufficient amount of energy. Furthermore, we show the dependence of this optimal deployment density on the guard zone radius of the primary network. In addition, we show that the optimal guard zone radius selected by the primary network is a function of the deployment density of the secondary network. This interesting coupling between the two networks is studied using tools from game theory. Overall, this work is one of the few concrete works that symbiotically merge tools from stochastic geometry and game theory

    A Survey on Wireless Security: Technical Challenges, Recent Advances and Future Trends

    Full text link
    This paper examines the security vulnerabilities and threats imposed by the inherent open nature of wireless communications and to devise efficient defense mechanisms for improving the wireless network security. We first summarize the security requirements of wireless networks, including their authenticity, confidentiality, integrity and availability issues. Next, a comprehensive overview of security attacks encountered in wireless networks is presented in view of the network protocol architecture, where the potential security threats are discussed at each protocol layer. We also provide a survey of the existing security protocols and algorithms that are adopted in the existing wireless network standards, such as the Bluetooth, Wi-Fi, WiMAX, and the long-term evolution (LTE) systems. Then, we discuss the state-of-the-art in physical-layer security, which is an emerging technique of securing the open communications environment against eavesdropping attacks at the physical layer. We also introduce the family of various jamming attacks and their counter-measures, including the constant jammer, intermittent jammer, reactive jammer, adaptive jammer and intelligent jammer. Additionally, we discuss the integration of physical-layer security into existing authentication and cryptography mechanisms for further securing wireless networks. Finally, some technical challenges which remain unresolved at the time of writing are summarized and the future trends in wireless security are discussed.Comment: 36 pages. Accepted to Appear in Proceedings of the IEEE, 201
    • …
    corecore