61 research outputs found

    Correlation Decay up to Uniqueness in Spin Systems

    Full text link
    We give a complete characterization of the two-state anti-ferromagnetic spin systems which are of strong spatial mixing on general graphs. We show that a two-state anti-ferromagnetic spin system is of strong spatial mixing on all graphs of maximum degree at most \Delta if and only if the system has a unique Gibbs measure on infinite regular trees of degree up to \Delta, where \Delta can be either bounded or unbounded. As a consequence, there exists an FPTAS for the partition function of a two-state anti-ferromagnetic spin system on graphs of maximum degree at most \Delta when the uniqueness condition is satisfied on infinite regular trees of degree up to \Delta. In particular, an FPTAS exists for arbitrary graphs if the uniqueness is satisfied on all infinite regular trees. This covers as special cases all previous algorithmic results for two-state anti-ferromagnetic systems on general-structure graphs. Combining with the FPRAS for two-state ferromagnetic spin systems of Jerrum-Sinclair and Goldberg-Jerrum-Paterson, and the very recent hardness results of Sly-Sun and independently of Galanis-Stefankovic-Vigoda, this gives a complete classification, except at the phase transition boundary, of the approximability of all two-state spin systems, on either degree-bounded families of graphs or family of all graphs.Comment: 27 pages, submitted for publicatio

    A Simple FPTAS for Counting Edge Covers

    Full text link
    An edge cover of a graph is a set of edges such that every vertex has at least an adjacent edge in it. Previously, approximation algorithm for counting edge covers is only known for 3 regular graphs and it is randomized. We design a very simple deterministic fully polynomial-time approximation scheme (FPTAS) for counting the number of edge covers for any graph. Our main technique is correlation decay, which is a powerful tool to design FPTAS for counting problems. In order to get FPTAS for general graphs without degree bound, we make use of a stronger notion called computationally efficient correlation decay, which is introduced in [Li, Lu, Yin SODA 2012].Comment: To appear in SODA 201

    Sublinear-Time Algorithms for Monomer-Dimer Systems on Bounded Degree Graphs

    Full text link
    For a graph GG, let Z(G,λ)Z(G,\lambda) be the partition function of the monomer-dimer system defined by kmk(G)λk\sum_k m_k(G)\lambda^k, where mk(G)m_k(G) is the number of matchings of size kk in GG. We consider graphs of bounded degree and develop a sublinear-time algorithm for estimating logZ(G,λ)\log Z(G,\lambda) at an arbitrary value λ>0\lambda>0 within additive error ϵn\epsilon n with high probability. The query complexity of our algorithm does not depend on the size of GG and is polynomial in 1/ϵ1/\epsilon, and we also provide a lower bound quadratic in 1/ϵ1/\epsilon for this problem. This is the first analysis of a sublinear-time approximation algorithm for a # P-complete problem. Our approach is based on the correlation decay of the Gibbs distribution associated with Z(G,λ)Z(G,\lambda). We show that our algorithm approximates the probability for a vertex to be covered by a matching, sampled according to this Gibbs distribution, in a near-optimal sublinear time. We extend our results to approximate the average size and the entropy of such a matching within an additive error with high probability, where again the query complexity is polynomial in 1/ϵ1/\epsilon and the lower bound is quadratic in 1/ϵ1/\epsilon. Our algorithms are simple to implement and of practical use when dealing with massive datasets. Our results extend to other systems where the correlation decay is known to hold as for the independent set problem up to the critical activity

    Approximate Capacities of Two-Dimensional Codes by Spatial Mixing

    Full text link
    We apply several state-of-the-art techniques developed in recent advances of counting algorithms and statistical physics to study the spatial mixing property of the two-dimensional codes arising from local hard (independent set) constraints, including: hard-square, hard-hexagon, read/write isolated memory (RWIM), and non-attacking kings (NAK). For these constraints, the strong spatial mixing would imply the existence of polynomial-time approximation scheme (PTAS) for computing the capacity. It was previously known for the hard-square constraint the existence of strong spatial mixing and PTAS. We show the existence of strong spatial mixing for hard-hexagon and RWIM constraints by establishing the strong spatial mixing along self-avoiding walks, and consequently we give PTAS for computing the capacities of these codes. We also show that for the NAK constraint, the strong spatial mixing does not hold along self-avoiding walks

    FPTAS for Hardcore and Ising Models on Hypergraphs

    Get PDF
    Hardcore and Ising models are two most important families of two state spin systems in statistic physics. Partition function of spin systems is the center concept in statistic physics which connects microscopic particles and their interactions with their macroscopic and statistical properties of materials such as energy, entropy, ferromagnetism, etc. If each local interaction of the system involves only two particles, the system can be described by a graph. In this case, fully polynomial-time approximation scheme (FPTAS) for computing the partition function of both hardcore and anti-ferromagnetic Ising model was designed up to the uniqueness condition of the system. These result are the best possible since approximately computing the partition function beyond this threshold is NP-hard. In this paper, we generalize these results to general physics systems, where each local interaction may involves multiple particles. Such systems are described by hypergraphs. For hardcore model, we also provide FPTAS up to the uniqueness condition, and for anti-ferromagnetic Ising model, we obtain FPTAS where a slightly stronger condition holds

    FPTAS for Counting Monotone CNF

    Full text link
    A monotone CNF formula is a Boolean formula in conjunctive normal form where each variable appears positively. We design a deterministic fully polynomial-time approximation scheme (FPTAS) for counting the number of satisfying assignments for a given monotone CNF formula when each variable appears in at most 55 clauses. Equivalently, this is also an FPTAS for counting set covers where each set contains at most 55 elements. If we allow variables to appear in a maximum of 66 clauses (or sets to contain 66 elements), it is NP-hard to approximate it. Thus, this gives a complete understanding of the approximability of counting for monotone CNF formulas. It is also an important step towards a complete characterization of the approximability for all bounded degree Boolean #CSP problems. In addition, we study the hypergraph matching problem, which arises naturally towards a complete classification of bounded degree Boolean #CSP problems, and show an FPTAS for counting 3D matchings of hypergraphs with maximum degree 44. Our main technique is correlation decay, a powerful tool to design deterministic FPTAS for counting problems defined by local constraints among a number of variables. All previous uses of this design technique fall into two categories: each constraint involves at most two variables, such as independent set, coloring, and spin systems in general; or each variable appears in at most two constraints, such as matching, edge cover, and holant problem in general. The CNF problems studied here have more complicated structures than these problems and require new design and proof techniques. As it turns out, the technique we developed for the CNF problem also works for the hypergraph matching problem. We believe that it may also find applications in other CSP or more general counting problems.Comment: 24 pages, 2 figures. version 1=>2: minor edits, highlighted the picture of set cover/packing, and an implication of our previous result in 3D matchin
    corecore