5 research outputs found

    Biometric storyboards: a games user research approach for improving qualitative evaluations of player experience

    Get PDF
    Developing video games is an iterative and demanding process. It is difficult to achieve the goal of most video games — to be enjoyable, engaging and to create revenue for game developers — because of many hard-to-evaluate factors, such as the different ways players can interact with the game. Understanding how players behave during gameplay is of vital importance to developers and can be uncovered in user tests as part of game development. This can help developers to identify and resolve any potential problem areas before release, leading to a better player experience and possibly higher game review scores and sales. However, traditional user testing methods were developed for function and efficiency oriented applications. Hence, many traditional user testing methods cannot be applied in the same way for video game evaluation. This thesis presents an investigation into the contributions of physiological measurements in user testing within games user research (GUR). GUR specifically studies the interaction between a game and users (players) with the aim to provide feedback for developers to help them to optimise the game design of their title. An evaluation technique called Biometric Storyboards is developed, which visualises the relationships between game events, player feedback and changes in a player’s physiological state. Biometric Storyboards contributes to the field of human-computer interaction and GUR in three important areas: (1) visualising mixedmeasures of player experience, (2) deconstructing game design by analysing game events and pace, (3) incremental improvement of classic user research techniques (such as interviews and physiological measurements). These contributions are described in practical case studies, interviews with game developers and laboratory experiments. The results show this evaluation approach can enable games user researchers to increase the plausibility and persuasiveness of their reports and facilitate developers to better deliver their design goals. Biometric Storyboards is not aimed at replacing existing methods, but to extend them with mixed methods visualisations, to provide powerful tools for games user researchers and developers to better understand and communicate player needs, interactions and experiences. The contributions of this thesis are directly applicable for user researchers and game developers, as well as for researchers in user experience evaluation in entertainment systems

    2019 EURēCA Abstract Book

    Get PDF
    Listing of student participant abstracts

    Sustainability in design: now! Challenges and opportunities for design research, education and practice in the XXI century

    Get PDF
    Copyright @ 2010 Greenleaf PublicationsLeNS project funded by the Asia Link Programme, EuropeAid, European Commission

    The role of simulation in developing and designing applications for 2-class motor imagery brain-computer interfaces

    Get PDF
    A Brain-Computer Interface (BCI) can be used by people with severe physical disabilities such as Locked-in Syndrome (LiS) as a channel of input to a computer. The time-consuming nature of setting up and using a BCI, together with individual variation in performance and limited access to end users makes it difficult to employ techniques such as rapid prototyping and user centred design (UCD) in the design and development of applications. This thesis proposes a design process which incorporates the use of simulation tools and techniques to improve the speed and quality of designing BCI applications for the target user group. Two different forms of simulation can be distinguished: offline simulation aims to make predictions about a user’s performance in a given application interface given measures of their baseline control characteristics, while online simulation abstracts properties of inter- action with a BCI system which can be shown to, or used by, a stakeholder in real time. Simulators that abstract properties of BCI control at different levels are useful for different purposes. Demonstrating the use of offline simulation, Chapter 3 investigates the use of finite state machines (FSMs) to predict the time to complete tasks given a particular menu hierarchy, and compares offline predictions of task performance with real data in a spelling task. Chapter 5 aims to explore the possibility of abstracting a user’s control characteristics from a typical calibration task to predict performance in a novel control paradigm. Online simulation encompasses a range of techniques from low-fidelity prototypes built using paper and cardboard, to computer simulation models that aim to emulate the feel of control of using a BCI without actually needing to put on the BCI cap. Chapter 4 details the develop- ment and evaluation of a high fidelity BCI simulator that models the control characteristics of a BCI based on the motor-imagery (MI) paradigm. The simulation tools and techniques can be used at different stages of the application design process to reduce the level of involvement of end users while at the same time striving to employ UCD principles. It is argued that prioritising the level of involvement of end users at different stages in the design process is an important strategy for design: end user input is paramount particularly at the initial user requirements stage where the goals that are important for the end user of the application can be ascertained. The interface and specific interaction techniques can then be iteratively developed through both real and simulated BCI with people who have no or less severe physical disabilities than the target end user group, and evaluations can be carried out with end users at the final stages of the process. Chapter 6 provides a case study of using the simulation tools and techniques in the development of a music player application. Although the tools discussed in the thesis specifically concern a 2-class Motor Imagery BCI which uses the electroencephalogram (EEG) to extract brain signals, the simulation principles can be expected to apply to a range of BCI systems
    corecore