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Abstract

A Brain-Computer Interface (BCI) can be used by people with severe physical disabilities
such as Locked-in Syndrome (LiS) as a channel of input to a computer. The time-consuming
nature of setting up and using a BCI, together with individual variation in performance and
limited access to end users makes it difficult to employ techniques such as rapid prototyping
and user centred design (UCD) in the design and development of applications. This thesis
proposes a design process which incorporates the use of simulation tools and techniques to
improve the speed and quality of designing BCI applications for the target user group.

Two different forms of simulation can be distinguished: offline simulation aims to make
predictions about a user’s performance in a given application interface given measures of
their baseline control characteristics, while online simulation abstracts properties of inter-
action with a BCI system which can be shown to, or used by, a stakeholder in real time.
Simulators that abstract properties of BCI control at different levels are useful for different
purposes. Demonstrating the use of offline simulation, Chapter 3 investigates the use of
finite state machines (FSMs) to predict the time to complete tasks given a particular menu
hierarchy, and compares offline predictions of task performance with real data in a spelling
task. Chapter 5 aims to explore the possibility of abstracting a user’s control characteristics
from a typical calibration task to predict performance in a novel control paradigm. Online
simulation encompasses a range of techniques from low-fidelity prototypes built using paper
and cardboard, to computer simulation models that aim to emulate the feel of control of
using a BCI without actually needing to put on the BCI cap. Chapter 4 details the develop-
ment and evaluation of a high fidelity BCI simulator that models the control characteristics
of a BCI based on the motor-imagery (MI) paradigm.

The simulation tools and techniques can be used at different stages of the application design
process to reduce the level of involvement of end users while at the same time striving
to employ UCD principles. It is argued that prioritising the level of involvement of end
users at different stages in the design process is an important strategy for design: end
user input is paramount particularly at the initial user requirements stage where the goals
that are important for the end user of the application can be ascertained. The interface
and specific interaction techniques can then be iteratively developed through both real and
simulated BCI with people who have no or less severe physical disabilities than the target
end user group, and evaluations can be carried out with end users at the final stages of
the process. Chapter 6 provides a case study of using the simulation tools and techniques
in the development of a music player application. Although the tools discussed in the
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thesis specifically concern a 2-class Motor Imagery BCI which uses the electroencephalogram
(EEG) to extract brain signals, the simulation principles can be expected to apply to a range
of BCI systems.
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1 Introduction

Summary. This chapter defines the target user group of brain-computer interfaces (BCIs)
addressed in this thesis and discusses the challenges for developing applications under the
identified constraints. This leads to the motivations behind the simulation approaches
proposed for use the in design and development of BCI applications.

1.1 The need for Brain-Computer Interfaces

A person with a physical disability may be unable to use mainstream technologies such as
a mouse or keyboard to operate a personal computer. An input device or software designed
to enable such people to use a computer can be called an assistive technology (AT), or
alternatively an augmentative and alternative communication (AAC). These include single
switches of various forms, head mice, speech recognition systems, eye gaze trackers and even
software for touch screen devices.

The most severe form of motor disability is locked-in syndrome (LiS). The term, coined
by Plum and Posner in 1996, refers to a state in which a person is almost completely
paralyzed yet remains cognitively aware (Khanna et al., 2011). In this condition known
as classical LiS, vertical eye movements, including blinking, are possible. In incomplete
LiS, some additional residual muscle movement such as in a finger, toe or head has been
recovered, while in total LiS, the person has lost control of even eye movements (Bauer et al.,
1979). Diagnosis of cognitive awareness can be obtained by manual cognitive assessment
and is sometimes evidenced by neuroimaging techniques such as magnetic resonance imaging
(MRI) or electroencephalography (EEG). Common causes of LiS are due to a lesion in
the pons in the brainstem and neuro-degenerative diseases such as in amyotrophic lateral
sclerosis (ALS) (D. Lule, 2009). Detailed discussions of the etiology and complexities of LiS
can be found in Patterson and Grabois (1986); D. Lule (2009).

Contrary to intuition, a large proportion of people who find themselves in such a state of
being are willing and able to continue living for many years with a good quality of life (Doble
et al., 2003). However, empowering people to communicate is essential to maintain a good
quality of life (Kübler et al., 2001). For persons with classical LiS, the most common and
arguably the most efficient means of communication is via eye blinks or eye gaze to a care
giver or other human being. One can either communicate ‘yes’ or ‘no’, or spell words by
indicating the desired letters on an alphabet board. The invention of the personal computer
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and the Internet also improves the quality of life of people who would otherwise be even
more isolated from the rest of the world. Eye gaze trackers and eye blink technology allow
some people access to computers, and persons with incomplete LiS can use a single switch
device (Betke, 2010). However, for people with total LiS, it is impossible to communicate
using any overt muscle movement.

A brain-computer interface (BCI) is a system that aims to extract a user’s intention whilst
bypassing the normal modality of physical movement by measuring and analysing brain
signals. This thesis focuses on BCIs whose purpose is to enable people with severe physical
disabilities such as LiS to independently use a personal computer or other machine. The
system can either be an end user’s sole means of digital interaction or communication, or it
can be used as an alternative channel to be used during occasions of muscle fatigue Millán
et al. (2010). Such a system has the potential for a wide variety of applications for improving
the quality of life for people with LiS. The uptake and acceptance of such a system depends
on the capabilities, preferences and motivation of an individual (Kübler et al., 2001).

Other definitions and uses of BCIs are not discussed here, although some of the tools de-
scribed may be useful for such systems. These include gaming applications for healthy
people and BCI as implicit interaction where some aspect of person’s mental state is mon-
itored in order for the system to adapt to changing user needs (e.g. detection of alertness
to compensate for driving in the case of fatigue) (George and Lécuyer (2010), Zander and
Kothe (2011)). Training in biofeedback has also been used to help mood regulation for
children who have ADHD (Lofthouse et al., 2012).

1.2 Overview of Current BCIs

This section briefly describes the current state-of-the-art of BCI research in general, drawing
attention to the BCIs used in the current work. A more complete overview of the different
types of BCIs can be found in Dornhege et al. (2007); Wolpaw et al. (2002).

BCIs can be classed into those that use either invasive or non-invasive neuroimaging meth-
ods. Invasive methods involve either direct recording of neurons by implanting electrodes
into the brain or the use of electrocorticography (ECoG) which detects the summed elec-
trical activity of thousands of cortical neurons (e.g. Hochberg et al. (2006)). Non-invasive
methods encompass those neuroimaging methods that do not require surgery. Functional
magnetic resonance imaging (fMRI) and near infrared spectroscopy (NIRS) work by mea-
suring the blood oxygen levels in different areas of the brain, and EEG is similar to the
ECoG in that it records the synchronous electrical activity of large populations of cortical
neurons.

Birbaumer (2006) reported that people with end-stage ALS are more willing to use non-
invasive BCI: out of 17 people asked, only one was willing to try invasive BCI methods
despite being informed of the possible improvement in speed and accuracy. For this user
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group, speed of communication is evidently not an important factor as to be able to com-
municate at all would be a significant improvement in their quality of life (Birbaumer,
2006).

Of the non-invasive methods, the EEG has the advantages of being one of the most portable,
is relatively inexpensive and has the best temporal resolution, and is thus currently a viable
system of choice to use for a BCI. Between 2 and 128 electrodes are attached to the scalp via
a specialised cap which holds the electrodes. Gel is applied between each electrode and the
scalp to reduce the impedance of the signal. Although dry electrode caps are commercially
available, within the BCI research community it is generally accepted that the current
technology does not provide an adequate signal-to-noise ratio for BCI use, especially for the
target end user group.

Regardless of the specific technology used, the BCIs used in this field of research follow
the functional model shown in Figure 1.1 and formalised by Mason and Birch (2003), in
which relevant features from the raw brain signals are extracted and translated, producing
a signal which is used as input to a control interface, whose output in turn drives a device or
software application. The control interface is defined as a mapping between the signals from
the feature translator, or translation algorithm (in the BCI used in this thesis, a machine
learning classifier), to a control signal that can be understood by the application or device.
This may be discrete outputs such as ‘top’ or ‘bottom’, or continuous control signals such
as the output of a probabilistic classifier.

A BCI paradigm defines how and what mental states are detected by a BCI system and
used as a person’s intention. Stimulus-driven, or synchronous, BCIs are those which present
interface objects as stimuli to the user. In an evoked-response potential (ERP)-based BCI,
the user is asked to pay attention to the desired object, and a characteristic brain signal
correlated with the timing of the presentation of the stimulus is used to infer the desired
object. The most commonly used of these is the P300, which is a positive peak in the EEG
that can be detected 200–700ms after the appearance of rare auditory (Klobassa et al.,
2009), visual (Nijboer et al., 2008b) or tactile stimuli (Aloisea et al., 2007). A response to
flickering visual (SSVEP) or tactile stimuli (SSSEP) whereby the EEG oscillates at the same
frequency of the stimulus can also be used (Beverina et al. (2003), Zhang et al. (2007)).

Self-paced, or asynchronous, BCIs involve a user voluntarily producing 2 or more mental
states which can be separated by a machine learning classifier. The promise of such BCIs
is that the timing of the interaction is controlled by the user rather than being dictated by
the system. Each mental state is mapped to a particular function of the control interface.
The most common of these is the motor-imagery (motor-imagery (MI)) paradigm, where
the imagination of movement of different body parts are mapped to different controls in the
control paradigm. For example, imagination of the right hand might be mapped to selecting
the top half of the screen. Although other mental states have been explored (e.g. Friedrich
et al. (2012)), most of the research has been carried out with MI as there are well-defined
placements for the electrodes which reduces the number required, and mapping these mental
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Figure 1.1: Overview of any BCI system. A neurophysiological signal (usually monitoring
either electrical activity or blood oxygen level) must first be measured. Features
are extracted from this and used to provide evidence of a particular mental state.
The system’s beliefs are then fed back to the user and may be used to operate a
device or control a computer application. From Wolpaw et al. (2002).

states to control objects such as left, right, up or down is seen as being more intuitive than
with other mental states such as imagining a cube rotating or doing complicated sums in
one’s head.

It should be noted that although the term ‘self-paced’, or ‘asynchronous’, has been used in
the BCI literature to describe such systems, this is somewhat a misnomer as in reality, a
truly self-paced BCI where a person can choose not to interact with the system is difficult to
achieve. Instead, the timing of the interaction is controlled by the system, which provides
cues to signal when the user should perform the mental strategy to control the interface,
and breaks to allow the user to rest and plan their next action. This is analogous to
scanning based interfaces that are typically used with single switches or single keyboard
input. Common to both interaction techniques, the system timings are customised for
individual end users.

Until now, stimulus-driven BCIs have been more successful than self-paced BCIs. Nijboer
et al. (2010) showed that a higher bit rate was achievable in persons with late-stage ALS
for a P300 paradigm than a MI paradigm. In 2009, the first commercial BCI spelling
system designed specifically for end users with severe motor disabilities, Intendix,1 was
released. This uses the visual P300 paradigm for an application which allows spelling,
sending an email message, controlling the environment, access to a couple of games and a

1http://www.intendix.com/
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brain painting application. Such a commercially available system is currently not available
for motor-imagery based brain-computer interface (MI-BCI).

Although the proposed methodology of design and development of BCI applications de-
scribed in this work may be applied to stimulus-driven BCIs, the simulation tools have been
developed specifically for MI-based BCIs. Self-paced BCIs have the advantage that the user
potentially feels more in control of their input to the system, the control input (i.e. the
mental states) is independent of the feedback modality, and the feedback is less annoying
for users. The complexity of the control in comparison to stimulus-driven BCIs also make
it a more challenging area of research. Details of the control characteristics pertaining to
MI-BCIs are discussed in later chapters.

1.3 Difficulties in Developing Applications for BCIs

In 2008, Lécuyer et al. (2008) commented that there had been little uptake of HCI research
into BCI applications. While the BCI research community continues to develop and improve
feature extraction and classification methods, very few BCI applications actually exist. The
ones that do exist often feature very basic features or clunky interfaces which may be difficult
for the user to learn.

Several reasons contribute to making it difficult to design and develop applications for BCIs.
Firstly, access to end users is very limited as there are few of them and it may take weeks to
organise interviews or user trials with them. It may take a long time for them to articulate
their desires and wishes, and they can tire quickly. Yet, being able to involve end users
in the design process is especially important as the gap in knowledge of what users want
is greater for designers designing for people who have special needs than in designing for
people with no major disabilities (Thimbleby, 2008).

Secondly, heterogeneity among the end user group is large as people have different capa-
bilities and different needs and desires. In terms of sensory capabilities, an individual may
have combinations of visual, auditory or tactile sensitivity which any communication solu-
tion must be adapted for. For example, a person who is not able to control their eye gaze
may not be suited to using a visual ERP-based BCI, but may still be able to have enough
control to view a display on a large screen. In terms of user requirements, people will inher-
ently have different priorities. For example, one person who was allowed to communicate
using a BCI for the first time asked, ‘Why am I wearing such an ugly shirt?’, which surprised
her therapists (Kübler et al., 2001). These factors make it difficult or even impossible to
design a one-size-fits-all application or device for end users.

Large individual differences also exist in the control characteristics of BCI. For example,
the phenomenon of ‘BCI illiteracy’ (Blankertz and Vidaurre, 2009), where a user is unable
to produce mental states that can be reliably detected by the BCI, is found for about 20%
of the general population for MI-BCIs. Thus, customisation of the application and control
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parameters for each individual person is required, and there is no guarantee that a user will
be able to use a BCI despite many sessions of training.

Individual differences contribute to the time-consuming nature of carrying out usability
tests and experiments with people, and even more so with end users. At least for MI-BCIs,
training over a few sessions, ranging from one or two hours each, is required. For each
session, some time has to be allocated to fit the BCI cap, apply gel and clean up afterwards,
and because the communication rate is slow, the actual user study can take a few sessions
of a few hours each. The time-consuming nature of BCI research should be highlighted as
it is common in human computer interaction (HCI) research for experiments to be quickly
carried out. In a 2007 workshop entitled ‘BCI meets HCI’,2 HCI researchers learned that
BCI research is a slow process. Many of the ideas proposed and research questions raised
by the HCI researchers were received with interest; however it was pointed out that each
new idea would take months to plan and run an experiment for.

Finally, the entry level into development of BCI applications is high. The main reasons for
this are the high cost of purchasing the necessary hardware and the knowledge or skill base
required to process and use the brain signals. This is exacerbated by the fact that BCI
control signals have not been standardised: the application cannot easily be separated from
the specific control signals expected by the system. Thus, it has generally been difficult to
develop the BCI application separately from the control signal. As the control characteris-
tics of BCI input are qualitatively different from other input methodologies, guidelines (e.g.
Gajos (2010); Doherty et al. (2001)) are helpful but not sufficient for building BCI appli-
cations. Typically, the BCI application is developed by the same engineering team which
develops the algorithms for feature extraction and classification. Without the resources to
apply HCI and design principles to applications, it is difficult to develop applications that
enhance the user experience. Experience with other BCI researchers working in the field
also suggests that time can be wasted when a system failure occurs in a full BCI trial that
could have been uncovered prior to placing a real brain in the loop.

This thesis aims to show that simulation techniques can be used to aid design and develop-
ment of BCI applications, lessening the impact of the problems described above. McFarland
et al. (2003) postulated that simulation could be useful for designing and developing BCI
applications rather than inferring anything about control of new paradigms; however this
has not really been investigated in the BCI literature.

1.4 The Role of Simulation and Modelling in Design and

Development

A model of a system, artifact or environment is a simplified representation that captures its
essential characteristics for a specific purpose. A simulation is the operation of the model,

2IDIAP Research Institute, Martigny, Switzerland, 2007
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where the intention is to draw conclusions, qualitative or quantitative, about the behaviour
or properties of the system. Simulation is used in a wide range of contexts where it is either
more expensive, impossible or impractical to investigate or test a real system (Maria, 1997).
It is also useful in situations where it is more expensive, difficult or impossible to build a
mathematical model of the system that can be analytically solved.

This thesis distinguishes offline and online simulation. In offline simulation, a computer
model of the system is run to explore or predict the behaviour of a system. Some applica-
tions of this include investigating natural phenomenon in biological and physical sciences,
and developing systems in business operations and networking. In online simulation, a hu-
man being may be placed in the loop to interact with the system. An example application is
a flight simulator which is used to train pilots before actually flying an airplane. Online sim-
ulation can also be defined as a real-time visualisation of a system being run automatically,
such as in a visualisation of weather prediction.

In mainstream HCI, models are widely advocated as being useful for design and develop-
ment. Kieras (2003) explains that model-based evaluation is needed to provide insights
into usability before testing with end users. Besides saving time and development costs,
models of human performance can contribute to scientific knowledge of how people interact
with computers. He uses the analogy that software engineering needs to become more like
engineering a bridge: the developer should know that a system is going to be stable be-
fore actually building it. In this respect, simulation techniques can be used to predict and
optimise the performance of a system, and to check for safety and correctness.

However, model-based evaluation is probably not as crucial in mainstream consumer ap-
plications for the average healthy user as it is for people with severe cognitive or motor
disabilities. This is because easier access to a healthy target user group allows for rapid
prototyping in iterative design. In contrast, it can be more difficult to access people with
disabilities and a user study can take longer and is more effortful for the participant. In-
clusive design aims to make it possible for mainstream applications to be used by people of
all abilities. To this end, good models and guidelines must be made available to designers
and developers. Offline simulations can be used to automatically check the properties of a
system, but their usefulness is necessary limited as there is no validation by an actual user.
If used correctly, online simulations can be used to enable designers to experience a system
from another point of view. By partially experiencing someone else’s situation, they may be
able understand the issues better and thus come up with suitable solutions (Poulson et al.,
1996).

Because of the extreme nature of BCI control characteristics and user groups, simulation
techniques have the potential to be extremely useful in reducing the time spent on virtually
every stage of the design and development process. In requirements gathering, prototypes
can be used to elicit end user reactions to scenarios. Simulation can help to reduce the time
costs of application development by making predictions about performance and enabling
user testing without the costs of setting up the BCI, and lower the threshold of entry into
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designing applications. Although simulation cannot completely replace end user involve-
ment, the aim is to show that the benefits of simulation outweigh the costs of developing
the tools in the first place. Chapter 2 proposes a design process through which simulation
techniques can aid in the design and development of BCI applications.

1.5 Overview of Thesis and Contributions

Designing applications for severely disabled users using a Brain-Computer Interface (BCI)
as an input mechanism is difficult due generally to the time consuming nature of end user
trials and the heterogeneity of the target population. This thesis presents two simulation
techniques that have been explored in order to inform the design and development of BCIs:
namely offline simulation which aims to predict the performance of a BCI, and online
simulation whereby the subjective feel and control of the BCI is captured in order to allow
exploration of new paradigms and applications. The main contribution is the introduction of
a design process through which simulators are used at different stages to design applications
for people with Locked-in Syndrome (LiS).

Chapter 2: Describes the uses of simulation for the purposes of design and development in
HCI, AT and BCI research, placing the current work in the context of the state-of-the art
techniques. Control characteristics of BCIs are described, followed by a proposed design
process for a BCI application which uses simulation at different stages to inform the design
or understand underlying principles of interaction.

Chapter 3: By representing menu hierarchies using finite-state machines, graphical mod-
elling tools can be developed that are easy for designers to work with. Simulations of item
selection for menus in which there is a uniform probability of selection show that it is impor-
tant to match the performance and control characteristics of users with the error correction
mechanisms. Although this information in itself is not new, as others have demonstrated
this using various techniques, the specific findings with regard to the value of the specific
error correction methods menu hierarchy have not previously been published. In addition,
there have been no comparisons between predictions based on the calibration trials and
actual online performance. To evaluate the models, we thus compare offline predictions
of task performance based on the calibration tasks, with control in an actual application
setting. The contributions made here are the modelling of menu hierarchies in terms of time
taken to achieve tasks and the comparison between offline predictions of task performance
and actual online performance.

Chapter 4: This research also provides the first attempt to explicitly model the classifier
output of a BCI system for the purpose of design and development of applications. A model
of the time series is useful as it allows the feel of the control characteristics to be captured
in the online simulation mode. Additionally, it can replace the BCI signals as real input
into the BCI application being tested. Several methods were used to model and generate
the output of the system. Evaluation of the models using quantitative measures indicates
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that different techniques are useful for modelling different characteristics of the system.
Evaluation with BCI experts indicated that the model was sufficient for use for BCI input.
Healthy users also provided qualitative feedback on comparing their use of real BCI with
simulated BCI. The simulator can thus be used to explore applications and paradigms in
an ‘online simulation’ manner.

Chapter 5: Simulation models were applied to the rotate-extend (REx) selection mechanism.
This is a novel paradigm for 2-class motor imagery that is a generalisation of the original
Hex-O-Spell interface. Here, one mental class is used to rotate an arrow round the centre
of a wheel, while the other class is used to extend the arrow in order to select a segment
of the wheel. Offline simulation was used to estimate the expected performance of the REx
paradigm from binary trials for a given user. The results showed that combining the results
from several models can provide predictions that better match the real data. The approach,
whereby calibration data from individual users are used to predict performance in a novel
paradigm provides motivation for further research into improvement of simulation models
for predicting individual user performance in novel paradigms.

Chapter 6: A case study of designing and developing a music player application is presented.
This applies the proposed design process in Chapter 2, where the fidelity of developed
prototypes in each design stage is traded off with the number of end users close to the
target group of end users. Findings across stages and across users are drawn together to
provide insights into a music player that might be developed for an actual end user with
LiS. The benefits and limitations of the design process are discussed.

It is worth noting that the work in this thesis was completed within an EU-FP7 project,
Tools for Brain Interfaces (TOBI).3 The choice of using two classes for the motor-imagery
paradigm was a commitment made early on in the project, while the BCI system used in
the experiments was provided by the CNBI group in EPFL, a partner in the project (details
in Section 3.2). This allowed the design and development of applications without requiring
to develop the system from scratch. As such, the signal processing, feature extraction and
classification methods used were determined by the system, which generated values from a
probabilistic classifier at 16Hz. These values were output over the TCP/IP network accord-
ing to a project-defined protocol and used by the author in the development of experiments,
selection mechanisms and applications. The choice to use the same BCI system, developing
applications separately from the low-level processing, meant that other partners and end
users in the project could simply use the applications once a user had been trained to use
that system. Data from experiments involving people with disabilities, namely the valida-
tion of offline simulations in Section 3.6 and the user evaluations in Chapter 6, were either
obtained from, or carried out in collaboration with, BCI researchers and AT professionals;
more details are explained in the relevant sections. The experiments involving only healthy
participants in Chapters 4–6 were designed and carried out by the author.

3www.tobi-project.org
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2 Background

Summary. This chapter begins with a brief background on motor-imagery based brain
computer interfaces (MI-BCIs), as this is the main focus of the simulation tools described
in the next chapters. It then describes the control characteristics of state-of-the-art BCIs,
emphasising those based on detection of voluntary (‘asynchronous’) mental state detection.
A literature review of simulation techniques used in HCI, BCI and assistive technology (AT)
research draws attention to the similarities and differences between BCI control character-
istics and that of other input modalities, and positions the current simulator tools in the
design and development process of a BCI application.

2.1 Motor-Imagery Brain Computer Interfaces

MI-BCIs are a subset of the class of BCIs that are based on voluntary potentials; that is, the
system input depends on its ability to detect mental states that are voluntarily produced by
the user, rather than an EEG artifact produced in synchrony with an external stimulus. The
EEG measures the voltage potential difference between each electrode in the EEG montage
and a reference electrode that is usually attached to an electrophysiologically neutral part
of the body, such as the ear lobe. A standardised system called the International 10-20
system allows for placing the electrodes strategically depending on the mental strategy or
strategies that have been chosen to operate the BCI. For the system used in the course
of this research, 16 electrodes are used; however, as few as 3 (Scherer et al., 2007) for a
subject-specific choice of location and as many as 128 (Blankertz et al., 2006a) have also
been reported in the literature.

Large numbers of neurons firing at the same time produces oscillations in the EEG signal at
a particular location of the brain. These oscillations are characterised by the amplitude in
different frequency bands. Sensorimotor rhythms (SMRs) are oscillations in the EEG located
in the sensorimotor areas of the brain, which can be represented by the homunculus–the
‘little man in the brain’ (Bear et al. (2006), Figure 2.1). These motor neurons are associated
with the motor control or sensation of different body parts. During rest, when no motor
activity is present, large numbers of neurons are firing in synchrony give rise to oscillations in
the 7-13Hz range (α-rhythm) and the 15-30Hz range (β-rhythm) (Pfurtscheller and Neuper,
2010). Actual or imagined movement of specific body parts disrupts the synchrony, which
is referred to as event-related desynchronisation (ERD), a reduction of the amplitude of
the related frequency bands. An increase in the synchrony is referred to as event-related
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synchronisation (ERS). As the ERD and ERS can be localised according to certain body
parts that are being imagined, this forms the basis of classifying the mental states. As
SMR activity has been well established in the literature, MI-BCI has been the most popular
choice for mental-state based BCIs.

Figure 2.1: Left: sensorimotor areas of the brain. Right: the motor homunculus, or ‘little man
in the brain’, is a representation of the area of the primary motor cortex dedicated
to different parts of the body. From Pfurtscheller and Neuper (2010).

Still, around 20% of people are currently known to be ‘BCI illiterate’ with MI-BCI (Guger
et al. (2003), Fazli et al. (2009)), where they are unable to reach an acceptable level of
performance for communication. Although the reasons for this are still under active inves-
tigation, recently some inroads have been made into discovering why this may be the case.
One reason for an inability to control a MI-BCI occurs when the correct mental strategy is
not used. The type of feedback presented as well as inter- and intra-subject variation may
also affect the ability to operate an MI-BCI; Grosse-Wentrup and Schölkopf (2013) presents
an up-to-date review of the current literature on performance variation in BCI.

2.2 Control Characteristics of a BCI

BCI control characteristics are different from other input modalities. In this section, sim-
ilarities and differences between different modalities are discussed. The aim is to provide
a background for understanding the later literature review of tools and techniques that
have been used in mainstream HCI, AT and BCI research, and in the development of the
simulation tools used in later chapters.

2.2.1 Required Motor Capabilities for Operation

Apart from BCI, most available input techniques for communication require motor input.
Mainstream technologies for healthy users generally require the use of the hands for input,
and other modalities are rarely used. An exception is speech recognition software, which
has been used increasingly by the general population as the technology improves. There is a
wide range of available ATs to enable a person to communicate. If a person has residual use
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of any muscle, a single switch device can be can be operated. Examples are a single shoulder
muscle or head movement, a breath or mouth-operated switch, or electromyography (EMG),
which can be used to detect even weak muscle activity. Other examples of ATs for physically
disabled users include arrays of switches, mouse emulators which can be controlled using a
mouth stick, and eye gaze technology which tracks eye movements in order to allow a person
to select objects on the screen. The ATs are usually selected and (sometimes ingenuously)
customized to a person’s preferences and individual capabilities.

For ERP-BCIs based on visual attention, good control of ocular muscles should be present.
This is comparable to eye gaze technology, which requires good control of ocular muscles
for fixating on a particular point on the screen in order to select a particular interface
object. However, the BCI research community has been developing ERPs using auditory
evoked potentials (Höhne et al., 2011) as well as covert attention (Aloise, 2012), which do
not require the ability to fixate on a particular object; thus no motor capabilities need
to be present. A visual ERP system may be more usable for people for whom eye gaze
technology does not work, due to the inability to control one’s eye gaze sufficiently (Nijboer
et al., 2008b). For oscillatory-based BCIs, motor control is not necessary. A hybrid BCI
has been defined as a human-computer system that uses at least one intentional BCI signal
as input (Pfurtscheller et al., 2010). For example, the system can use different physiological
signals or motor input either to augment or substitute the BCI signal. Thus, a person could
use a single switch or other modality to access a computer, switching to BCI mode on the
onset of fatigue. The time of switching could either be manually controlled or automatically
determined by the system based on its assessment of poor signal quality.

Thus, the potential benefit of BCI is that people who are completely paralyzed, and ad-
ditionally do not have good eye gaze control, are nevertheless able to communicate simply
by using thought alone. One limitation of this is that there is no proprioception in BCI
control; that is, the user is unable to get feedback from muscles and joints about exactly
what they are doing. Thus, feedback from the system is necessary to fulfil this role.

2.2.2 Required Sensory Capabilities for Operation

BCI systems share a similar trend with most mainstream consumer technologies in that
most interfaces have been developed to display their output visually onto a digital screen.
Yet systems have also been built for auditory output and tactile output. Most commonly,
screen readers such as JAWS1 for Windows and the in-built screen reader for the Macintosh
OS are used effectively by people who are blind. People who are locked-in may lose ocular
control to the point that they are unable to see, and thus it is important for BCI research
to develop in terms of auditory and tactile output. A review of the small number of current
studies that develop BCI systems that do not rely on the visual modality can be found
in Riccio et al. (2012). As the output of the system is generally independent of the input
modality (apart from with ERP-BCIs where the link is inherent), the same controls need

1http://www.freedomscientific.com/fs products/software jawsinfo.asp
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only to be re-mapped to the relevant application controls, tailoring the system’s control and
output to the particular modality.

2.2.3 Degrees of Freedom

The degrees of freedom allowed for a single selection varies for different input technologies.
Assuming that the size of a typical on screen button is 100 × 25px, a single click of the
mouse is able to select one out of 300 items for a screen with a resolution of 1024× 768px.
For visual ERP-BCIs, typically 2-36 stimuli are reported in the literature, while for eye gaze
technology a full size keyboard (approx. 70 keys) may be placed on the screen. In both
cases, the number of objects that can be placed on the screen for selection depends on the
degree of ocular muscle control the user has.

In terms of the number of mental states used in oscillatory-based BCIs, between 2 and 6
classes have been reported in the literature (e.g. Bashashati et al. (2007), Obermaier (2001),
Doud (2011)). The choice of number of classes is dependent on the choice of system and the
user’s preference and ability. 2 classes are most widely reported in the literature, allowing
for binary (e.g. ‘yes’, ‘no’ or ‘left’, ‘right’) responses. Obermaier (2001), Dornhege (2006)
and Kronegg et al. (2007) demonstrated that for the levels of accuracy that are currently
achievable, 2–4 mental classes are optimal depending on the user and the BCI system used.
However, increasing the number of classes may not improve the ITR significantly enough
to warrant the extra efforts involved in developing an application interface to account for
the higher degrees of freedom. The number of degrees of freedom can also be increased by
increasing the control paradigm. McFarland et al. (2003) conducted an experiment where
users controlled the vertical position of a cursor moving horizontally from left to right, with
the screen divided into 2, 3, 4 or 5 target segments. For most users, the optimal ITR was
achieved when 4 targets were used. Besides increasing the number of mental states used
to control the number of available degrees of freedom, 2-D (Wolpaw and McFarland, 2004)
and 3-D (McFarland et al., 2010) control has also been achieved by training the subject
to regulate specific oscillatory features in a positive (ERS) or negative (ERD) direction,
increasing the number of dimensions as the user gains control over the lower dimensions.

Although some systems operate by distinguishing between two or more mental states that
are intentionally produced by the user, attempts have also been made to detect single mental
states from rest (Pfurtscheller and Solis-Escalante, 2009; Fazli et al., 2009), allowing for a
‘brain switch’. This is analogous to using a single switch system, assuming that the user
has some control over the timing of the system. In both cases, a hierarchical interface is
used to divide the selection space. For example, it may take several selections to select a
single letter of the alphabet.
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2.2.4 Selection accuracy and time-to-selection

Selection accuracy is the percentage of time the user is able to select what they intended
to select, while the time-to-selection refers to the time it takes to make a single selection.
Together with the number of degrees of freedom, these limit the communication rate achiev-
able through the system, and are important to bear in mind in designing applications for
BCI. For a 2-class BCI, a selection accuracy of at least 70% is commonly taken to be the
minimum for reliable communication to occur (Blankertz et al., 2008; Kübler et al., 2004),
while Müller-Putz et al. (2008) showed that for an experiment of 20 trials per class in a
2-class system, the upper 95% confidence limit of chance selections is 70%.

Selection accuracy for healthy users using mainstream input technologies (mouse and key-
board) is assumed to be reasonably high, with errors being due to user errors such as slips
and mistakes (Norman, 1998). Slips occur when the user intends to make the correct action
for the desired goal but inadvertently produces the wrong motor action, while mistakes are
due to the user actively selecting the wrong action, perhaps due to a misunderstanding of
the consequences of the inputs. In this sense, BCI shares a common ground with input tech-
nologies based on machine learning, such as speech and gesture recognition, where instead
the errors are due to a mismatch between the user’s intention and the system’s belief. With
such systems, the inability of the system to detect the user’s intention can be due either to
noise in the environment (e.g. electrical noise surrounding a BCI), or the inherent variabil-
ity of human performance (the user does not do exactly the same thing each time). With
BCIs, noise also occurs due to the presence of neural activity that is not related to the brain
signals of interest. Frustration occurs when the system does not detect the user’s intention,
and there is frequently a mismatch between the user and system’s (mental) models of the
features that are used to distinguish the relevant instructions to the machine. Thus, the
user often cannot figure out why the system does not recognise their input, and this leads
to further stress and frustration.

The time taken to make a single, discrete, selection affects the total amount of time required
to complete a task. In HCI, well known models of movement time (Fitts’ Law (Fitts, 1954))
and time taken to make a decision (the Hick-Hyman Law of choice reaction time, (Hick
(1952), Hyman (1953))) can be used to predict the time it would take a user to makes
selections and thus complete intended tasks. In BCIs, the time taken to make a selection
depends on the choices made by the system designer with regard to the length of time
allocated for the system to gather evidence about the user’s intention, and whether this is
fixed or variable. In cue-based or synchronous interfaces, an addition is the time between
selections which are for the user to have a break or decide on the next selection. For
ERP-BCIs, the time taken to make a selection has usually been fixed, based on the chosen
length of time or number of stimulations presented to the user. Recently, dynamic stopping
techniques (Schreuder et al., 2009) have been employed where the stimulation is stopped
when the system deems that enough evidence about the user’s intention has been gathered.
For MI-BCIs, both fixed time and variable time selection methods are employed. Typically
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for the former case, the participant is asked to control a feedback cursor to a target position.
At the end of the allocated time for evidence accumulation, the selection is taken to be the
one closest to the position of the cursor. In the latter case a decision is made when the
accumulated output reaches a threshold (i.e. the feedback cursor reaches the target).

For MI-BCIs this may be even more extreme and frustrating, as often the user has no way
of knowing if the uncertainty in the system is due to their own inconsistency in imagining a
movement that can be easily distinguished by the system. As the evidence is accumulated
over time, it may be that repetitive movements (e.g. repeatedly opening and closing the
hand) are easier to detect rather than a single movement (e.g. prolonged clenching of the
fist), but the noise in the system does not allow the user to easily figure it out.

2.2.5 Asynchronous control

Asynchronous control refers to how much freedom the user has to decide when to interact
with the system. A continuum exists in BCI between fully synchronous and fully asyn-
chronous interaction. In fully synchronous interaction, the time of interaction is fully de-
termined by the machine. No other input technology shares the same level of synchronicity
as ERP-BCIs, as the user’s neurophysiological changes are an unconscious response to the
system generated stimuli. In fully asynchronous interaction, the user is able to determine
exactly when he wants to interact with the system. This is the case of most common input
devices such as keyboard or mouse input. Other assistive technologies may lie somewhere in
between the extremes, for example with a single switch scanner, the system scans through
in its own time and the user has to make a click at the right time.

Achieving a truly asynchronous control with BCI is an active area of research (Fazli et al.
(2009), Millán et al. (2008)). This aims to identify ‘idle’ or ‘rest’ states in which the user
can voluntarily choose not to interact with the system. The BCI used in this research can
be thought of as a semi-synchronous protocol, where the system dictates when the user can
provide commands to the system, but there is a variable timing as to when the user makes
a selection (see Chapter 3.2 for details).

2.2.6 Input-Output Delays

Delays are inherent in any man-machine system and may arise from the either the system
or the user. Williamson (2006) (pp. 31) provides a succinct overview of the sources of
delays in a typical man-machine system. These influence the delay the user feels between
intending or performing an action, and the effect of that action being presented by the
output of the system. Delays can create uncertainty and frustration for a user, and affect
user performance in manual control systems.

Systems which incorporate information over a period of time, and optionally require high
computational power for processing, such as gesture or speech recognition, have inherent
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delays which are noticeable to the user. Transmission delays can occur in systems where
signals have to be transmitted over long distances, such as in teleoperations or telerobotics
(Smith and Christensen, 2009). These may create similar effects as in self-paced BCIs, as
the user has to wait for a period of time before the system responds or is even able to
acknowledge an input. People can learn to compensate for delays to an extent; however if
the delay is too long or too inconsistent, this is no longer the case. With the BCI used in
this research, the delay is likely to be around 0.5s at minimum, which occurs due to the 1s
time window within which EEG signals are collected (Millán et al., 2008).

Delays can also arise from the user-end of the interaction. For people with physical disabil-
ities, it can take a longer time for the user to be able to convey their desired input to the
system. For example, tremors may cause a person to take a longer time to press a button.
Yet this differs from BCI as there is usually some proprioceptive or visual feedback, and it
is less ambiguous when they have provided input to the system. The system attempts to
substitute for this lack of proprioception by providing feedback in the form of the cursor
movement, but because of the delay added to the system and the noise and uncertainty, it
can be difficult for the user to use the feedback unless they have fairly good performance (see
later chapters for a more in depth discussion on the issue of feedback). It is possible that the
lack of proprioception also makes the delays seem longer. Delays specific to asynchronous
BCI include the time it takes to switch between mental states.

2.2.7 Noise and Uncertainty

In a motor-controlled system, one is able to see and feel movement one’s one movement.
While tremors and spasms can occur, such as in Parkinson’s disease or cerebral palsy, making
it difficult to make finely controlled movements, visual and proprioceptive feedback mean
that the ‘noise’ can be seen and is unambiguous. For other HCI techniques that use artificial
intelligence to infer user intention, such as speech recognition or gesture interaction, noise
and uncertainty also arise because the system’s classification of the user’s input may be
wrong due to noise or variability. However, here again the user is aware of their inputs
and how the system is misreading their intent. Conversely, in MI-BCI, the effect of noise is
enhanced in part because of the lack of proprioception: a user who is learning to use a BCI
has no idea whether they are reliably producing the correct mental states or signals that
can provide useful information to the system for classification.

2.2.8 Stimuli and Feedback

In an ERP-BCI, stimuli is presented to the user at a much higher frequency than needed for
other input modalities. As the brain response is coupled to the target stimuli, reducing the
time interval between successive stimuli is desirable. Nevertheless, this can be uncomfortable
for the user. This issue is related to the synchronicity of the user interface. In a non-ERP
BCI, feedback is usually presented to the user in the form of a cursor moving on the screen.
The goal is for the user to be in voluntary control of the feedback. The role of feedback in
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MI-BCI is an ongoing topic of research (Neuper and Pfurtscheller, 2010).

Stimulus-response compatibility is a concept formalised by Fitts and colleagues from the
5́0s (Fitts, 1954), which refers to a consistent and natural mapping of system controls to the
user’s expectations. For example, a natural mapping for switches controlling the left and
right lights in a room is for the left switch to control the light on the left. Incompatibility
between what the user and the system expect can be annoying for users in the best case, and
have fatal consequences in situations where there is a great degree of risk. The phenomenon
relates to self-paced BCI, as the user’s mental states (e.g. imagining left/right hand move-
ments) must be mapped somehow to the system controls (e.g. left/right, up/down). It is
appreciated that natural mappings should be made as far as possible, and this is a reason
for choosing motor imagery as a strategy for BCI control; yet this is not possible even for
binary selection using an MI-BCI, as the best strategy for some users is not left and right
motor imagination (corresponding to moving a cursor left and right), but left/right hand
and foot motor imagination. The effect of this on user learning and ease of controlling a
BCI has not been formally investigated. It is possible that slightly unnatural mappings
in a binary selection would not affect the user too much as people can learn the simple
mapping, but for a larger number of classes where the mental states do not naturally match
a system control (such as mental rotation to move a cursor to the left), or for other control
paradigms, an overhead at least for learning the mental state-system mapping should be
taken into account.

2.2.9 Summary of Control Characteristics

To summarise, in addition to the lower rate of communication than even most ATs, MI-BCIs
have additional overheads including the noise and uncertainty due to a lack of propriocep-
tion. The various different types of BCI having different properties can be confusing to a
new user of ATs, and the control characteristics of the interaction can be difficult to com-
prehend to a naive user who has not actually used a BCI. Even while watching someone
use the system, it can be difficult to comprehend the skill required to operate a MI-BCI.
Thus, we argue that simulating the control characteristics of the system can at least inform
someone of the nature of using the system. Even as BCI technology continues to improve,
simulating the system can help designers, developers and stakeholders to work with and
communicate the new technologies.

2.3 Simulation in the Software Development Life Cycle

To simulate is to ‘imitate the appearance or character of’ an object (Oxford Online Dictio-
nary2). To this end, various prototyping and modelling techniques can be placed under the
umbrella heading ‘simulation’, which are used at various stages of the software development
cycle, from design to development. This section provides an overview of the ways in which

2http://oxforddictionaries.com
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different simulation techniques are used to design and develop software applications in HCI,
AT and BCI research. The benefits of using these tools, as well as gaps within the BCI
literature, are identified. Offline simulation is distinguished from online simulation, where
offline simulation refers to a model that is run at ‘computer speed’ such that the output
are summary statistics of the metrics the user wishes to analyse. In contrast, in an online
simulation, the system is run in such a way that that the user can see the changes at each
step of the simulation in real time. This can either be passive such that the user only views
the simulation once it has been set up, or it can be interactive such that the user is actively
involved in engaging with the simulation in real time.

Several themes run throughout the discussion of simulation tools and techniques. The
fidelity of a simulation is the degree to which it replicates the exactness of the object it
models. As a simulation is a model, or simplification, of a real system, it is naturally never
an exact representation of a real system. The choice of fidelity at which to build the model is
related to the cost (at least in terms of time invested) and to the purpose of the simulation.
There is a trade-off between the cost and fidelity of any model, such that the value of
improving the fidelity of the model is justified by the cost of development, up to a point
where the return on investment becomes too small to warrant the improvement. It is up to
the model user to make a judgement call based on whether a model is ‘good enough’ for its
intended purpose, as a low-cost prototype or simulation is not necessarily less useful than
a high-fidelity one depending on the purpose and the stage of development. Identifying the
purpose of the system also allows one to isolate the properties of the simulation that need to
be focused on. Thus, the fidelity of the simulation may not refer to the whole system, but
to specific aspects of the simulation, such as the fidelity of the experience (Buxton, 2007),
or the physical design of the system.

Another theme that runs through the discussion on simulation tools and techniques is the
tightness of coupling between the user and the simulation. User centred design (UCD) is
an approach to design which aims to produce solutions that match the real requirements of
end users (see section 2.5). This approach is firmly embedded in the culture of design and
development, where the system is designed to create the best possible experience for the
user. The simulation techniques can be positioned in a space that represents the tightness of
coupling between the user and the fidelity of the simulation (Figure 2.2), which is a useful
representation as it shows how a mixture of different types of simulation can be used to
engage the user and provide answers to design questions.

2.3.1 Offline Simulation and Modelling

Offline modelling and simulation of human-computer interfaces has been a wide-ranging
field of research almost since computers have existed. Formal methods involves represent-
ing a system in such a way that its properties can be analysed without having to manipulate
the real system (Dix, 2003). The abstraction can take the form of mathematical or com-
putational models whose output can be computed or simulated, or diagrams which can be
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Figure 2.2: Coupling between the user and the fidelity of simulation. In this case, fidelity can
either refer to the look and feel of the simulation, or the accuracy of behaviour the
system is supposed to model.

automatically analysed or manually stepped through. Applications of offline simulation of
human-computer interfaces include checking and accounting for errors and predicting task
performance.

Error checking. At the system level, a model of the system can be used to check the
correctness of a software design or an actual system. Diagrams such as State-Transition
Networks (STNs), Petri-Nets or Harel State Charts, and textual models such as process
algebras, are used to model the user interface, which can be used to check that desired
properties of the system hold (Dix et al., 2004). For example, in checking for reachability,
the designer wishes to check that the system allows the user to get from every state of the
system to every desired state (Dix et al., 2004). It is also important to check that user
inputs made at every state of the application lead to desirable outcomes. Perhaps because
applications designed to use a BCI as input are simple due to the limited number of degrees
of freedom that are available, such techniques have not typically been employed within a BCI
application development context. Text entry programs are also typically built with formal
structures, sometimes incorporating language models to increase the communication rate
(e.g. Perelmouter (2000)), and thus it may be more difficult or time-consuming to simulate
these tasks. Nevertheless, model checking can be used for applications such as those for
controlling environment variables like lighting or the television, which involve hierarchical
menu structures. As errors are common and can either be due to slips, mistakes, or system
misinterpretation as previously discussed, it is important for designers to check that errors
are undoable and do not lead to disastrous consequences.

35



2 Background

Predicting task performance. Simulation and modelling can be used to predict task
performance. Formal modelling in HCI involves developing a mathematical model of the
user’s interaction with the system, incorporating aspects of the system in order to predict
performance measures such as time taken to achieve tasks and how often tasks can be
accomplished. The model can be used to provide predictive or comparative measures of
performance either through calculation or simulation. Simulation rather than calculation is
used where it is either more difficult, costly, or simply impossible to obtain a mathematical
model. The cost of development of such models is related to the precision or complexity
that one wishes to capture, and is traded off with the level of increasing return.

The Model Human Processor (MHP), first described by Card (1986), is a useful framework
for analysing the system from the user’s point of view, dividing the user part of the system
into the cognitive, motor-behavioural and perceptual aspects. Psychophysical models such
as Fitts’ law and the Hick-Hyman law of choice reaction time both provide predictive,
quantitative measures as well as guidelines for design, while the GOMS models (John and
Kieras, 1996) predict task times based on separating tasks into micro tasks and summing the
expected time to complete the micro tasks. The Cogtools application (John, 2011) allows
one to set up usability tests which predict how long someone will take to complete a task
given a GUI layout. This incorporates models that have been developed by psychologists
and human factors researchers over many years, rather than requiring the user to have in
depth knowledge and implement these themselves. Limitations of these models are that
they model expert users and do not take into account user error or learning. The emphasis
on the motor aspects of these models does not allow them to be easily used in the context
of BCI, where there is no motor control and thus entirely new models of the user input need
to be built.

Controversy exists within the HCI community of the value of modelling and simulation for
mainstream input techniques, particularly when it comes to modelling of cognitive archi-
tectures. It might be argued that usability testing is quicker and more valuable than offline
simulation. This may be warranted to some extent with interfaces using input technolo-
gies that are quick to implement and interact with in real time, and with users who are
easily accessible. However, for developing interfaces for people with disabilities, the lack of
immediate access to users, the diversity of issues and disabilities, and the slow rate of com-
munication make offline simulation a valuable tool for designers and developers to build new
techniques for interaction and to predict usability for users with particular characteristics.
The work by Biswas (Biswas and Robinson, 2008b; Biswas and Langdon, 2011) aims to de-
velop models and simulators for disabled users that can be used to predict task performance
in a system by considering the user aspects of the system. Models of motor control of dis-
abled users have been used to optimize applications for single switch scanning. For example,
Bhattacharya et al. (2008) identified the nature of errors that motor-disabled users make
in single switch scanning tasks, which were subsequently used to predict the performance
of different text entry designs. However, BCI-specific models need to be developed as the
nature of the interaction and the inputs are different to other input technologies. While
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the perceptual models from previous work may be useful, cognitive aspects such as fatigue,
stress or motivation need to be investigated further to understand and predict their effect
on performance.

2.3.2 Online Simulation and Prototyping

The need to involve the end user in the design and development process, as early and often
as possible, is a principle that is firmly embedded in the principles of UCD. Many of the
tools and techniques that can be presented to the end user for discussion, exploration and
testing are simulations of a future system and can be placed under the umbrella terms
prototyping and simulation.

Houde and Hill (1997) defines a prototype as ‘as any representation of a design idea, regard-
less of medium’ which has the purpose of answering specific design questions or exploring
design options. Thus, a prototype can be represented as a point within a triangular func-
tional space, where its purpose is to investigate some combination of the role a system
will play in users’ lives, the implementation of the system (how the functionality should
work), and what it should look and feel like (Figure 2.3). Identifying the purpose of the
prototype helps to narrow down the questions that the designer should ask, and to identify
the tools and techniques that should be used. The authors also emphasize that both high-
and low-fidelity prototypes can be used at different stages in the design process for different
purposes. The prototypes can be used in various contexts such as focus groups, interviews,
online studies, surveys, usability studies and field studies.

This section explores different purposes for prototyping as well as tools that can be used
for each purpose, discussing their applicability to BCI design. In each of the techniques
presented, there can be low-fidelity versions or high-fidelity versions. Lim et al. (2008)
suggests that the best prototype for a given situation should be one that is the simplest to
implement for its given purpose.

Exploring the role of a system. The role of a system is the part it will play in the
life of the user, how the user intends to use it and in what contexts. For example, does a
person want to play games with other people, or just by themselves? This can be thought
of as the part of ‘getting the design right’ (Buxton, 2007) in the design process. Designers
can use scenarios, storyboards and video prototypes, which can either be animated or static,
to present ideas of how a proposed system might be used in different ways, in different
environments and situations, and with different people. These allow exploration of possible
uses or the role a system should play in a person’s life. The prototypes can either be passive,
where they are merely presented to users and discussed after viewing, or they can be used
as tools in participatory design (Sanders, 2002), where users are encouraged to contribute
design ideas. In either case, however, the designer’s role is to uncover underlying needs and
values of the user, rather than to simply implement designs suggested by the users. Within
a context of development for BCI users, the designer’s ideas of how a system might be used
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Figure 2.3: A model representing the functional space of prototypes. Taken from Houde and
Hill (1997).

can be presented to end users in the form of stories. This concretises the designer’s idea of
what the user’s environmental or social context might be like, such that the prototype is
a discussion point for an end user to relate the context presented in the scenarios to their
own. Their agreeing or disagreeing with the designer’s idea of how the application might be
used can then be grounded in a better understanding of the actual life and concerns of the
user. As it takes time for the users to communicate, having a prototype as a discussion point
saves time and energy as the user does not have to describe their situation from scratch, and
even simple ‘yes’ or ‘no’ answers to questions can provide valuable insights for the designer
to use.

Exploring the behaviour (implementation) of the system. Exploring how the system
should work is an important part of design, as users need to understand the system (it
should be usable) and find it pleasurable to use (it should create a good user experience).
A mixture of low- and high-fidelity prototypes can be used to capture the behaviour of a
proposed system, and have also been used in usability testing. With low-fidelity prototyping
methods such as paper prototyping (Snyder, 2003), cardboard and paper cutouts can be used
to represent buttons and menus on a graphical user interface. The participant to a user
study can press fake ‘buttons’ on the ‘screen’, which the designer then modifies to simulate
the system’s response. This allows the designer to test how well people can understand and
use a system. However, it is somewhat difficult to create interactive low-level prototypes
for a BCI system for two reasons. Firstly, as a BCI is intended to be controlled by thought,
it is not possible to simulate the input. This may be overcome by asking users to indicate
verbally or by pointing to the correct controls. Since it is a prototype, it may be argued
that this is not a matter of huge importance, and the method can be used to test that
the basic logic of the system is understandable. However, if one wants to explore how the
application should behave given the control characteristics of the BCI, it is tricky to do
as the experimenter has to simulate the control, incorporating the noise and error of the
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feedback. For this reason, the concept of video prototyping (Vertelney, 1989) may be more
useful to present the behaviour of a BCI system to end users. Despite the passive nature
of the method, it can be used to demonstrate the implications of a system having the
characteristics of BCI, such as the length of time it might take to select an album in a music
player, or the number of errors that might occur. This might be more useful in engaging
end users to find out how they want the system to function given the characteristics of BCI.

Another prototyping technique is the Wizard of Oz (WOZ) technique (Bernsen et al., 1993),
which is a method of simulating a system where its behaviour appears to be automatic, but
behind it is an experimenter who is actually providing the system response based on the
user’s input. The name of the technique comes from the children’s novel Alice’s Adventures
in Wonderland (Carroll, 1865), in which the seemingly magical ability of a powerful wizard
from the land of Oz turns out to be no more than the actions of an elderly man hiding behind
a screen. The technique is well-suited to investigating future systems that incorporate
artificial intelligence in the interaction, such as in gesture and speech recognition. Aspects
of the system can be controlled in order to investigate how potential properties of a system
will be used and understood by the target end users. The participant can either be led to
believe that the system is fully operational, or they can be informed of the existence of the
wizard. In the latter, the wizard can either be visible to the user, or hidden behind a screen
or in another room.

One property of the a system that can be controlled using a WOZ simulation is the uncer-
tainty in the system. This makes it a prime technique to be used in BCI research, as a BCI
system may be fairly unpredictable. For example, the performance of the system could be
controlled such that one can compare usability aspects of a system, or user experiences of
a system, where the control of the system is variable. Evidently, it is difficult to simulate a
BCI system as the wizard has no way of knowing when an whether a participant is actually
imagining the correct mental state. One way of getting around this, as with the low level
prototype, might be to ask the user to point or verbally indicate their intended action.
Such a means of prototyping not been explored in the BCI literature. It is possible that
a combination of low- and high-fidelity prototyping can be used to explore the behaviour
or usability of an intended design. For example, the interface could be a low-fidelity paper
prototype, while the control of the BCI rendered by a digital simulator.

A more common means of investigating the low-level characteristics of the system is to use
an automatic system and assume that the person is engaging with the task correctly. For
example, Lynn et al. (2010) used a fake BCI to investigate the illusion of intention. Users
were asked to try to move the cursor on the screen as much as possible, and it was found
that a person’s level of perceived intention to move the cursor could be manipulated by the
number of times the cursor was perturbed. In this case, the system itself can actually be
thought of as the ‘wizard’ modifying the user’s input.

Other studies using online simulation have been used to investigate people’s perceptions
of systems with unreliable input. van de Laar (2011) investigated how the level of control
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influences gamers’ perception of fun. The experiment showed that for a simple game where
users had to control the 2D position of a hamster, increasing control increases a sense of
fun, up to a point where there is no challenge and it becomes boring. Plass-Oude Bos
(2011) compared user experiences of using a ‘utopia’-BCI and a ‘real’ BCI with respect to
preferences for the use of different mental tasks to change aspects of a character in the game
World of Warcraft. In the utopia BCI, users were asked to imagine the mental state and
then press a button to indicate when they had completed the imagination. The authors
found that ease of imagining the mental state was the largest factor for preference for mental
states in the utopia BCI, whereas system recognition was by far the largest factor for real
BCI. The example helps to understand how users expect an intelligent system to work.
Cincotti et al. (2007a,b) used a noisy mouse input representing the noisy input of BCI to
explore tactile feedback, showing that tactile feedback could compensate for visual feedback
under high visual workload conditions. Other than these examples, simulation seems to be
an under-used, but potentially highly valuable tool for BCI research.

In the examples above, general simulators have been used in order to capture a single aspect
of a BCI system. However, as user performances can vary widely and there are control
characteristics that affect the feel of control of a BCI other than noise and error, it would
be useful to develop online simulators that capture the feel of control specific to individual
BCI users. Such an online simulator would allow a designer or developer to uncover as
many usability issues as possible that might be found when using a real BCI. Thus, a good
online simulator should, as much as possible, capture the relevant control characteristics of
the system that may affect the user’s performance and experience when using a real BCI.

Experience prototyping and emphatic modelling. Experience prototyping, as intro-
duced in Buchenau and Suri (2000), is defined as ‘any kind of representation, in any medium,
that is designed to understand, explore or communicate what it might be like to engage with
the product, space or system we are designing’. Such prototypes are not intended to be
used in formal usability testing, but at the design stage to engage with potential end users
and to inspire designers to think about the potential issues and to come up with solutions.
It can also be used to communicate the concept of the system to end users and stakeholders.

Empathic modelling (Poulson et al., 1996) can be thought of as a subset of experience proto-
typing, where the focus is on simulating disability in order to allow designers to understand
a system from the user’s point of view. This then enables the designers to appreciate the
problems the system should tackle. Buchenau and Suri (2000) begins with a simulation
where designers wore a pager which would beep intermittently, in order to experience the
feeling of uncertainty and stress associated with wearing a chest-implanted automatic de-
fibrillator which might deliver a shock to a patient at any moment. Through this method,
the designers were able to appreciate the importance of providing a warning to patients and
informing bystanders of what was happening. Other examples include the Third Age Suit
Hitchcock et al. (2001), which is a wearable outfit which simulates the restricted movement
experienced by the elderly for the purpose of design.

40



2.4 Levels of simulation in BCI application development

The online simulator developed over the course of this research can be used as an experience
prototype as it aims to enable potential end users and stakeholders to understand what it
feels like to use a BCI without actually using one. Both people who have never tried to use, or
people who cannot use, a BCI can use the simulator to understand the control characteristics
of the system, while for someone who is training to use a BCI, it may communicate what is
possible with a BCI and thus motivate them to continue. In terms of empathic modelling,
it might be used by someone who has perfect BCI control to experience the potential
frustration involved in using a system with more control variability than they are used
to. In the context of BCI, low-level simulation can potentially enable people to experience
the frustration of using a BCI without needing to wear an EEG cap. On the other hand,
learning to achieve control of a BCI can be fun and challenging, so in the same way that
flight simulators are entertaining for people who might never become a pilot, understanding
the skill required to control a BCI through using a simulator could bring respect for a trained
BCI user.

Empathic modelling tools are typically used by designers and stakeholders to informally
explore usability issues arising from the disability. Such tools are generally not used for
usability testing with healthy users as a substitute for end users, or to make predictions
about the actual performance of a user interface using a particular mode of interaction. One
exception is the EASE tool which simulates the interaction of users with motor disabilities
(Fait and Mankoff, 2003). Using this tool, it was found that adaptive word prediction is
useful only for typing speeds less than 5-8 words per minute, correlating with previous
findings in the literature. An online BCI simulator would be another exception to the rule,
where it could be used to obtain qualitative feedback from users about the design of a
particular control paradigm or application, as well as to predict task performance using
either online or offline simulation.

2.4 Levels of simulation in BCI application development

The techniques used to develop a simulator or simulation model depend greatly on the
purpose of the simulation. Simulation at different levels of the interaction process are used
for different reasons and have different forms. In the current work, a distinction is made
between high level simulation and low level simulation. In descending order, these techniques
include:

• WOZ techniques and paper prototyping.

• Summary statistics of performance used for offline simulation. For MI-BCI, this in-
cludes the selection accuracy and speed.

• Simulation of the control signals. This can be used for simulating the feel of the
interaction.
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• Simulation of EEG. This has been used in BCI research for optimizing parameters for
feature selection and classification.

2.5 A process for design and development

User-Centred Design (UCD) is a set of design guidelines that aim to ground the process of
design in developing systems for the intended end users. 6 principles have been identified by
the ISO 9241-210:2010 standard Human-centred design for interactive systems (Wikipedia):

1. The design is based upon an explicit understanding of users, tasks and environments.

2. Users are involved throughout design and development.

3. The design is driven and refined by user-centred evaluation.

4. The process is iterative.

5. The design addresses the whole user experience.

6. The design team includes multidisciplinary skills and perspectives.

Although UCD advocates involving the end user at all stages throughout the development
process, in practice it is difficult to do this for participants who are locked-in or severely
disabled. Ethical issues associated with asking users to carry out usability tests for long
periods of time resulting in fatigue, or to test systems that are very much at the develop-
ment stage, make it undesirable to consult the real end users at every stage of development.
Thus the standard practice in developing ATs is to first test prototypes and systems with
people with no motor disabilities before bringing them to end users. For example, in de-
veloping a breathalyser for a people with chronic obstructive pulmonary disease (COPD),
Herriot (2012) found cultural probes, workshops and brainstorming sessions for eliciting
user requirements to be unfruitful. The researchers found that the best way was to use
video interviews lasting an hour, and even so this was effortful for the patients and would
take a day to materialise. They then consulted medical personnel to understand the issues
to be aware of, used empathic modelling to partially understand the difficulties one faces
by using a breath restriction device, and used themselves as subjects in testing parts of
proposed designs. Finally, a single ‘super user’ who was more committed to the study than
the other 7 identified users evaluated the system. Thus requirements and needs may be
elicited by end users, while development and some usability testing may be carried out by
healthy users in the iterative stages of prototyping. Finally, the end users can be involved
in testing and evaluating the final prototype.

Although such techniques have been described in AT and HCI literature, currently there
does not appear to be a unified approach to developing applications for BCI for potential
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end users. This is needed because the differences between end users needing to use a BCI
and people who are able to use other modalities of input are large, both in terms of the
constraints of current BCI technology and the abilities of end users. This leads to the
main argument of the thesis for a role of simulation techniques in the process of developing
BCI applications and novel paradigms. Offline simulations can be used to predict task
performance and develop novel paradigms, while online simulations or prototypes at all
levels can be used to getting the right design and the design right for end users (Buxton,
2007).

2.5.1 Proposed process for application design

In a proposed process for application design and development (Figure 2.4), end users would
be involved mainly at the beginning and at the end of a version cycle of the application.
End user requirements and expectations would be obtained through interviews and the
presentation of video prototypes and storyboards. This would allow the designers to have
a solid idea of the values the end user(s) have regarding the role and behaviour of the
application, building a foundation of knowledge that the designers are ‘getting the right
design’. During the design stage, the use of simulators during design and initial evaluation
with healthy users would contribute to ‘getting the right design’, before proceeding to
the more expensive trials with real BCI. Naturally, if a new BCI control paradigm was
being carried out, it would need to be developed with real BCI, but having an online
simulator would allow for usability testing and longitudinal studies without needing to
spend additional resources on real BCI.

The method can be thought of as a mixed-users approach where conclusions about user
preferences, usability, core tasks and user requirements can be triangulated across users.
Using a variety of research tools, with qualitative and quantitative data, with a larger
range of users, can help to form a holistic picture of the requirements of end users leading
to improved design. While quantitative data can be useful, large numbers of users must
often be consulted for statistical analysis. As users may tire easily, the methods chosen
for obtaining subjective feedback should be as effortless and enjoyable as possible. For
example, if a user is unable to or finds it difficult to speak, quantitative methods can be
used. If the end user can give feedback verbally, it may be easier and more fruitful for them
to communicate their opinions in this way.

Figure 2.4 illustrates a process for designing, developing and evaluating BCI applications
for end users, highlighting the roles that different prototyping and simulation techniques
can be used. It should be noted that the design process is not a linear, waterfall model,
but is iterative, and some of the stages may even be carried out in parallel. For example,
designing a new paradigm to be used with the BCI for a specific purpose, in stages 3-5, may
be begun in parallel with the user input stages 1-2, feeding in input from user feedback as
and when it is available. The design process also begins with the assumption that the BCI
paradigm is operable by the end user, since there is little point in developing an application
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based on an input modality that the person cannot use. At each stage of the process, it is
important for the designers to look beyond what the user says, uncovering their unspoken
needs and values.

1. Identifying user requirements. Obtaining user requirements at this stage can be in the
form of interviews, focus groups, questionnaires, or observations of the user in their
environment. Simulation tools are probably not useful at this stage, although in a
single session, this stage of the process may be mixed with stage 2 if the designers
have some prior knowledge of the situation. The main participants in identifying user
requirements would be the actual end users who have LiS, people who have less severe
motor disabilities, caregivers, friends and family, and AT professionals.

2. Designing the role: getting the right design. In this stage, the designer presents
potential scenarios in the form of storyboards or video prototypes as discussion points
to find out the role that end users expect the proposed system to play in their lives.
Again, in a single session the discussions and prototypes may blend with those in stage
3. The main user groups would be the same as those in stage 1.

3. Designing the look, feel and behaviour: getting the design right. In this stage, proto-
types can be presented to users in order to establish how the prototypes should work.
Video prototypes, Wizard of Oz simulations, and online (low level) simulators can be
used at this stage, and as previously discussed, there can be a mixture of high and
low fidelity simulations being used in a prototype. Offline simulations could be used
to establish how long it might take to achieve tasks, and this might be communicated
to the participants of this stage, who might be end users, and non-disabled people.

4. Implementation. At this stage, the offline simulations can be used to check the cor-
rectness of the system, again to time how long it would take to achieve tasks, while
the online simulators would used by a developer to partially test network connections
and how the system would work given the inputs from the simulator.

5. Evaluation with healthy users. During the initial evaluations, the online simulator is
used for usability testing in conjunction with real BCI. The advantages of using the
online simulator is that usability issues such as whether people can use and understand
this system can be raised, leaving the BCI-specific usability issues to the real BCI.
Offline simulations could be used to estimate how long a usability test might last.

6. Evaluation with end users. Finally, evaluation of a final prototype would be carried
out with end users. The usability issues found with healthy users would be corrected
such that at this stage, usability issues specific to the end users can be identified.
Minor issues would be used to update the existing implementation, while feedback
requiring major changes would be used as input into the next version of the system.
Again, offline simulations could be used to estimate for a given user how long it might
take to carry out a usability test. This will help in planning the tasks that can be
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User	  Requirements	  
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Figure 2.4: A design process for BCI applications incorporating the use of simulation tech-
niques at different stages of the iterative process. End users are engaged at the
beginning in finding out user requirements with the aim of ‘getting the right de-
sign’ Buxton (2007), and at the final evaluation of the system, while healthy and
less severely disabled users are engaged in the design and evaluation of the system
during the ‘getting the design right’ stages. The diagram shows where different
simulation tools can be used in the design process. In general, low fidelity (or
low cost) prototypes are used at the beginning stages of exploration, while the
high fidelity tools are used in the later stages of implementation and usability test-
ing. Video prototypes (Chapter 6), offline simulation (Chapters 3–5) and online
simulations with the low level simulator (Chapters 4–6) are investigated in this
thesis.
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achieved in a given period of time, and ensuring that a participant would not be too
fatigued to complete tasks.

As an example scenario for describing the design process, in the case of the lady who
demanded to know why she was wearing such awful clothing (Kübler et al., 2001), a possible
application would enable her to choose the clothes she wanted to wear. Some initial user
requirements might be elicited from the end user by presenting her with several scenarios
of how and when she would want to choose her clothing. If the characteristics of the
user’s BCI are known, the designer might choose to focus on the user’s particular control
characteristics. Offline simulations could be used to design the menu system by providing
estimates of how long it might take to complete a task, for example selecting a set of clothing
from the wardrobe. If known, the user’s performance metrics would be used as input to the
simulator. Possible selection mechanisms and menu hierarchies would be compared, and
the best options for the user selected based on the simulation results. Low-level prototyping
might be carried out with non-disabled or less severely disabled participants, followed by
parallel development and usability testing with healthy users using online simulation and
real BCI. For example, healthy users could test the system in an online simulation mode in
order to establish how easily the interface can be understood. The combination of offline and
online simulations with able-bodied and disabled people would allow the designer to obtain
perspectives on different design options, eliminating as many usability issues as possible
before the real BCI trials and presentation to an end user.

2.6 Conclusions

In designing applications for end users of a BCI who have severe physical disabilities, the
requirements and abilities of end users must be considered along with the technical and inter-
actional constraints of the technology. This chapter highlighted the control characteristics
of an MI-BCI that make it difficult to apply rapid prototyping techniques for development.
If customisation of ATs is important for end users in general, the level of tailoring to an
individual must be greater still for BCI. It is argued that the development and use of mod-
els which pull together the different aspects of control can help to speed up design and
development of BCI applications.

Specifically, offline simulation tools can be used to predict task performance. High- and
low-fidelity online simulation tools can be used to engage both able-bodied and disabled
participants in design and evaluation. These simulation tools can potentially be used in
almost every stage of a UCD process, from design to implementation and evaluation. The
exception to the rule is the user requirements capture stage, since at this stage the users’
implicit and explicit needs are identified through interviews and other ethnographic tools.
Further investigation into the value of the different simulation techniques are provided in
later chapters.
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Summary. Evaluations of BCI performance typically compare menu hierarchies and tree
structures either in terms of the number of transitions required to reach a target, or the
theoretical information transfer rate which incorporates the speed of selection. However, the
time taken to achieve tasks may be a more useful and intuitive measure of task performance.
This chapter describes how a model of selection accuracy and distribution of times for
individual trials can be used to design menu hierarchies in finite state machines (FSMs) for
MI-BCI systems. A tool for creating and evaluating different menu hierarchies is described
and used to show that the time taken to achieve a task depends on the type of task, error
correction method, selection accuracy of a single transition, as well as the time taken to
make a single selection. In particular, it investigates menu hierarchies for tasks where there
is a uniform probability of selecting an item in the menu, and whether or not an undo or
delete is required for the application. Simulated performance of individual users in a spelling
task is compared with online BCI trials.

3.1 Introduction

As described in Chapter 2, simulation and modelling can be useful in making predictions
about user performance. This chapter focuses on offline simulation at the level of discrete,
binary selections. The lower rate of communication possible with BCI due to the error rate,
speed and limited degrees of freedom have prompted research into how best to optimize the
communication rate of the end user. Several approaches to generating efficient binary menus
with error correction have been described in the literature. Tregoubov (2005) computes the
most efficient binary trees for which there are unequal probabilities of selection accuracies
in the 2 classes. Bensch et al. (2007) used optimisation techniques to find the most effective
finite state transducer for unequal classes, which was used both in a spelling application
and a web browser. Dornhege et al. (2007) analytically derived the theoretical expected
bitrate of various error correction/coding methods for 2-4 classes with selection accuracies
less than 1.0. However, these applications do not take into account the implications of the
time it takes to make individual selections, and how the time to make a decision (reach a
leaf node) might be an interaction between the time it takes to make individual selections
and the selection accuracy. The nature of a possible speed-accuracy trade-off itself is an
aspect which has not been well investigated in the BCI literature: although there is usu-
ally implicit acknowledgement that some evidence accumulation is required to increase the
recognition accuracy of the system, as far as the author is aware, there has not been any
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formal investigation into how the selection accuracy changes as a function of time allocated
for making a selection. In this chapter, simulation is used to explore the value of considering
the time required for individual trials as well as the selection accuracy in designing menu
hierarchies. For example, if a higher selection accuracy always leads to a better overall
task performance, regardless of the time taken to make a decision, increasing the selection
accuracy should remain the priority for improving the performance of an individual.

There have also been few comparisons with real BCI data to determine if the predicted
measures actually compare with real data. This chapter thus presents an experiment com-
paring the performance of simulated users and their real performances. An approach to
predicting task performance which simulates user input to menu hierarchies modelled as
finite state machines (FSMs) is discussed. To begin with, the BCI used in the remainder
of this thesis is described in the next section (Section 3.2), along with a description of the
binary selection mechanism that is used in the calibration trials. In Section 3.3, measures
of BCI task performance and simulation performance are described. Section 3.4 describes
the use of FSMs to simulate task performance with an example of how to use the approach
in Section 3.5, and Section 3.6 compares the predictions of simulated with actual data.

3.2 BCI used in the current work.

As mentioned in Section 1.5, the MI-BCI used in the course of this work was obtained
from partners within the project. This was in part for convenience, as there would be
no need to either develop the system from scratch or re-train users, as well as to explore
how easily developers with no BCI expertise could interface with input from a BCI system.
Although the choice of signal processing, feature extraction and classification methods are
likely to affect the performance and control characteristics for a given user, regardless of
the method used there is a range of individual user performances. Moreover, even within a
given system the selected parameters and features are likely to affect performance. Thus,
for the purposes of the simulation experiments of a discrete, 2-class system described in this
chapter, the simulation methodology is likely to be valid for a range of MI-BCI systems of
the same nature. Details of low-level characteristics, however, are likely to influence the
methodology used to simulate the signals; this is discussed in detail in Chapter 4. In this
section, details of the chosen BCI and the BCI experimental methodology for offline and
online training are described.

The BCI system used was developed under Professor Millán at the École Polytechnique
Fédérale de Lausanne (EPFL), the basis of which is described in detail in Millán et al.
(2008), Galán et al. (2008) and Millán et al. (2004). Briefly, EEG signals obtained from 16
electrodes are attached to the scalp at positions FC3, FC1, FCZ, FC2, FC4, C3, C1, CZ, C2,
C4, CP3, CP1, CPZ, CP2 and CP4 according to the 10-20 system, plus a ground electrode
at FZ, and a reference electrode at the earlobe. A g.tec amplifier and data acquisition
unit records the EEG at 512Hz, which is band-pass filtered between 0.1 Hz and 100 Hz; a
Laplacian spatial filter is applied and the Welch power spectral density (PSD) is computed
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at a rate of 16 Hz with a window size of 1s and overlap of 500 ms, over the 4-48 Hz band with
2 Hz resolution. Thus, a feature set consists of 16 electrodes × 23 bandpower frequencies =
368 features. Out of these, between 1 and 7 features are selected semi-automatically during
the training stages, which saves computational power in online use. A Gaussian classifier
is used to compute a probability distribution over the two mental classes, which is usually
either left vs right hand, left hand vs feet, or right hand vs feet.

Prior to actual use, both the system and the user must be trained. The system is trained
to recognise the user’s mental states, while the user may require some time to understand
the system and what mental activities lead to the production of the most stable features
that can be separated by the classifier. Offline and online training can be distinguished.
The online training trials are also called calibration trials, as they are used to indicate
the baseline performance of a participant. In both training stages, a standard feedback
paradigm is used. This enables the participant to select one out of n targets, where a target
is a mental state or class that is reached by moving a feedback bar to the intended target.
The number of targets corresponds to the number of mental classes for that system. For
example, for a 2-class MI-BCI, there are two targets which can be left-right or top-bottom
targets.

A trial dictates the flow of the interaction and indicates to the user at fixed periods of time
which mental state should be performed. Figure 3.1 shows the sequence of a trial for a two-
class MI-BCI. The trial begins with an inter-trial-interval, where the user takes the chance
to relax and blink. A fixation cross is displayed which signals the user to mentally prepare
to start performing the mental imagery. The target to be selected is then highlighted. This
corresponds to the mental class a user should perform. The feedback begins moving as the
person imagines a mental class. The trial ends when the feedback bar reaches either side of
the bar; feedback is given to the user to reinforce the outcome of the trial: the target turns
red if the incorrect target is hit and remains green if correct target is hit. A run consists of
a set number of trials belonging to each class, presented in a randomised order. The work
in this thesis has used 15 trials per class for each run.

The differences between the offline and online training trials involve the number of feedback
classes that are shown, and the behaviour of the feedback. For a naive user (someone who
has never used a MI-BCI before), the offline trials usually have three targets left, right
and up, which correspond to imagining left hand movements, right hand movements or feet
movements respectively. After the initial offline training, the two ‘best’ classes are selected.
This can be a combination of user preferences (which imaginations felt subjectively the
easiest or most comfortable to perform) and the classes that produce features that are
the most easily distinguishable by the classifier. Since the target directions of the binary
paradigm are fixed at left and right, the most natural mapping between the mental state
and the target direction is used. For example, for the two classes left hand and feet, the left
hand is assigned the left target while the feet are assigned the right target.

In offline training, the feedback bar automatically moves toward the correct target. In
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online training (calibration trials), the feedback is updated according to the output of the
user-parameterised classifier and the chosen integration technique, which defines the rate at
which evidence is accumulated (see Chapter 4). The same selection mechanism can be used
in an actual application where the selection of targets correspond, for example, to a ‘yes’ or
‘no’ decision, steps in a menu hierarchy, or intermediate nodes in a spelling tree.

1.

2.

3.

4.

5.

Figure 3.1: Timeline of a single feedback trial for offline or online training for a two-class MI-
BCI, with screen shots of the feedback paradigm or selection mechanism. The flow
begins at the inter-trial interval. The ‘cursor’, or feedback bar is stationary in the
middle of the screen; the two blue squares on either side of the bar are targets
which the user can select by imagining a motor-imagery (MI) class, which should
move the feedback bar in the intended direction. After a variable time of 1–4s,
a fixation cross appears in the middle of the bar. This signals to the user that
the trial is about to start. Another second later, a system-selected target turns
green to indicate that this is the one the user should try to select. The trial begins
when the feedback moves, and ends when it hits a target. A trial is correct if
the feedback bar has reached the marked target, and wrong if the other target is
selected.

3.3 Measures

3.3.1 BCI performance measures

Several measures have been reported in the literature to compare the performance of in-
dividuals using a BCI. A set of guidelines for selecting the statistical measure to use for
comparing classifiers and BCI systems in general can be found in Billinger et al. (2013).
Some measures relevant to task performance in user interfaces are described below.

The selection accuracy, p, is defined as the proportion of trials correctly selected that the user
intended to select. Task accuracy can be defined as the the proportion of tasks undertaken
that the user was able to complete correctly. The selection accuracy for different classes
may not be equal, such that the user may select one class more easily than another. A
confusion matrix can be used to represent the individual selection accuracies of two or more
classes, where the rows represent the intended selection class and the columns represent the
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actual class selected. For example, a matrix M =
(

0.7 0.3
0.0 1.0

)
, where the the cell Mij represents

the proportion of intended trials for class i actually selected as class j, represents a user
with a p=0.7 for class 1 and 1.0 for class 2. The average value of the sum of diagonals
is taken to be the user’s overall selection accuracy. In the example, the average selection
accuracy is (0.7 + 1.0)/2 = 0.85. In this case, there is a bias towards class 2, where the
p=class 2 is significantly higher than for class 1 (where ‘significantly’ is a function of how
the difference between selection accuracies affects the overall user performance, which is
not investigated here. In general, however, equal selection accuracies in both classes is
desirable for a binary menu hierarchy, while knowledge that a bias exists can be exploited,
for example with the rotate-extend (REx) selection mechanism described in Chapters 5 and
6.). Cohen’s kappa (κ) (Cohen (1960) via Billinger et al. (2013)) is commonly used as a
measure of comparing the selection accuracy between systems for which there are more
than two classes, or correspondingly, more than two targets in the control interface. The
metric is useful for comparing performance across BCI systems which differ in the number
of classes used since, given the same overall selection accuracy for two systems which have
a different number of classes, the performance of the system with a larger number of classes
is theoretically more accurate.

The speed of making individual selections, here referred to as the time-to-selection TTS, is a
crucial measure of how quickly a task can be accomplished. In a MI-BCI, this is determined
by several variables: preparation time for a user before the start of a trial, rest time after
a trial, and the time taken to integrate the values of the classifier output over time, which
accumulates evidence over time. In addition, the time taken to make a selection can be
fixed, where the target closest to the accumulated evidence is selected after a specified
period of time, or it can be variable, where the trial terminates when enough evidence has
been acquired for the system to infer the user’s intention. Since the geometric mean is a
good approximation to the true median for reporting task times in HCI experiments for
small numbers of trials (Sauro and Lewis, 2010), this value is used as a measure of central
tendency for reporting task times for actual data.

Both p and TTS must be incorporated into an overall measure of performance. The in-
formation transfer rate (ITR), or bit rate, is commonly used as it incorporates both speed
and accuracy, providing a measure of the maximum amount of information that can be
transmitted through a channel. However, as Bianchi et al. (2007) explains, the actual user
performance is dependent on the design of the control interface which uses the communica-
tion channel. Thus, the control interface must be optimally tuned to the transducer. The
paper introduces the Efficiency Metric as a measure which compares interfaces with respect
to the selection accuracy. However, it may be argued that, for a designer or stakeholder,
such metrics are abstract and unintuitive. A useful metric to compare the combination of
the control interface, selection accuracy and TTS could be the overall task time. Compared
with identifying the number of selections or an abstract measure such as the bit rate, mea-
suring the time taken to complete tasks is also a more intuitive measure for designers and
stakeholders alike. Task time completion is also a standard metric used in HCI evaluations,
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and some BCI evaluations of actual end user devices.

3.3.2 Simulation performance measures

Since the model inputs, at least for selection accuracy (if not time-to-selection), can be
thought of as random variables, Monte Carlo simulations are used in this thesis to approx-
imate the variables of interest (i.e. task performance variables). A measure of the average
deviation of the simulated data from actual performance is given by

1
n

n∑
i=1

|yi − x|,

where n is the number of simulation runs, yi is a simulated variable and x is the correspond-
ing recorded value from a real run. yi and x can be single measures such as the time taken
to spell a single word, or some measure of central tendency such as the mean, geometric
mean or median time taken to spell a number of words. If the difference yi − x rather than
the absolute difference is taken, this provides a measure of the tendency of the simulations
to over- or under-estimate the actual task variable.

A prediction interval (PI) provides an estimate of how likely a given value produced by
the output of a simulation is to fall within the specified interval. A prediction interval can
be used to assess the level of confidence that one has in where the simulated variable of
interest is likely to lie for a given instance of a real trial. In this thesis, a 95% prediction
interval simply based on percentiles of the data is used, where, if α is the level of confidence
one wishes to establish, then the PI is within the [α/2, 100− (α/2)] percentile range of the
simulated data. The PI is distinct from the confidence interval (CI), which provides an
interval within which one would expect to find the long run average value of the variable.
Since the performance metrics obtained for each individual participant and each specified
task is a single instance, for comparisons of simulated and actual data the PI is used as a
measure of how well the simulator is able to predict the observed variable.

3.4 Modelling menu hierarchies using Finite State Machines

Menu hierarchies for binary selection may be represented using (deterministic) finite state
machines ((D)FSMs). FSMs are widely used in Computer Science and Engineering disci-
plines for modelling and testing systems. They have been used in HCI to model simple
systems such as mobile text entry (Sandes, 2005), calculators (Thimbleby, 2001) and other
devices for predicting task usability. The advantages of FSMs are that they are simple
to implement and can be used in a wide variety of applications. However, a drawback is
that they are static and are mainly suitable for small state spaces. A formal definition of
FSMs can be found in most introductory computing science texts, while applications of
state machines to interaction design can be found in (Thimbleby, 2007). Briefly, a DFSM is
a set of states (otherwise known as nodes, or vertices), which are connected by transitions
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(or edges). States represent where the user is in a menu hierarchy or spelling tree and are
graphically represented by circles with a corresponding state name. Transitions here are
the detection of a mental class which is mapped to a interface selection class, such as left
or right, and are shown with arrows. Terminating states are represented graphically by
squares, where a selection(i.e. selecting a function in a menu hierarchy, or spelling a letter
in a spelling tree) is made. The terminating states can be thought of as letters in an alphabet
which can be used to spell a word. It should be noted that the letters can be menu items
in a menu hierarchy, where a task is a ‘word’ which is achieved by selecting a particular
sequence of menu items.

To simulate a task, a target state is first identified, and the current state reset to an initial
state (root node) as defined by the structure of the hierarchy. At each state, Dijkstra’s
algorithm (Dijkstra, 1959) is used to find the shortest path (string of transitions) from the
current state to the target state, until a terminating state is reached. The next target state is
updated according to success or failure, and depending on the given task. The simulation for
a single trial proceeds until a criterion is met by the simulation user. The inputs to the FSM
are a user model which specifies the selection accuracy p and time-to-selection (TTS) for
each transition. Selection accuracy is usually defined as the probability of making a correct
selection, while the TTS can be either a distribution of times or a single value representing
an expected time. Although for any given individual, there can be variability in the selection
accuracy from run to run and session to session, this chapter makes a simplifying assumption
that there is a constant selection accuracy for each user. Comparing simulated with real
performance enables one to find out how useful the inherent stochasticity in the model is for
predicting actual performance in the future. Inputs may be updated as a function of some
observed behaviour such as the length of a task (for example, a user may become fatigued as
time goes on, deteriorating the performance of the system); however, in the current models
single inputs are used for each input variable. The outputs that are investigated are the
number of selections made to complete a task, and overall time-to-task. Simulations were
run using a set of python scripts which were developed specifically for this work.

3.5 Example: Comparison of task times for 4 menu hierarchies

In designing a binary menu structure, one can attempt to optimize the structure such that
the fewest selections are needed to reach a target on average. If the probabilities of selecting
different nodes are non-uniform (e.g. for a spelling task where some letters are known to
be more frequently used than others), a new FSM can be recomputed as the posterior
distribution changes given evidence of the user’s intent as given by the input. For the menu
hierarchies described in this section, a uniform probability of target nodes is assumed as
this is a simple, generalisable case. Another consideration is whether an undo function is
required. For example, in the case of a text entry system, a backspace is required to delete
any wrong characters that are spelled. An example of a menu hierarchy which does not
require an undo function might be in a music player, where if the wrong track is selected,
one can simply try again and repeat the selection. Section 3.5.1 discusses recommendations
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for where the user can simply redo or repeat the selection, while Section 3.5.2 discusses how
requiring a correction (undo) affects the task time for different error correction mechanisms.
In particular, the effect of the interaction between p and TTS with different menu structures
is investigated.

With the assumption that a user is likely to make errors while browsing the menu hierarchy,
an error correction mechanism embedded into the menu hierarchy may allow the person to
reach the required node more easily. The menu hierarchy can be displayed such that from
the user’s point of view, the internal design of the hierarchy is transparent: the user simply
needs to be able to quickly locate their target selection and identify the next mental state
needed to produce to reach the target. Thus, in this analysis it is assumed that there are
no extra cognitive effects of different menu hierarchies. A back-up transition allows the user
to step back up the hierarchy upon realising that the wrong selection has been made. This
has otherwise been referred to as a confirmation tree (Dornhege, 2006), where the option to
go back up the tree can alternatively be viewed as confirming the user’s previous transition.
The redirection resulting from selecting the back-up transition can return the user to various
positions in the tree. Here, the effects of returning the user to two positions up the tree,
or back to the top of the tree, are investigated. The number of levels in the hierarchy after
which a back-up transition is encountered must also be selected.

In addition, the possible benefits of a speed-accuracy trade-off are investigated in the next
sections. Although it is generally acknowledged that both the p and TTS are important for
providing information about a task, in MI-BCI research there has not been much research
into how these co-vary. For example, Bensch et al. (2007) assumes that the usual time taken
for selections is 5 seconds. The speed-accuracy trade-off is a well-known phenomenon in
motor tasks where a person’s accuracy in a task is traded off by the speed at which they
carry it out. Thus, a higher error might be compensated by a faster selection rate while a
higher selection accuracy might take a longer time; however this has not been explored in
the BCI literature. It is possible that a higher overall task accuracy might be achieved if
there is a lower p but a faster TTS. This section thus aims to provide estimates of how much
faster task times need to be in order to maintain the overall task times if a lower selection
accuracy is accepted.

As an example, 4 menu hierarchies with 8 letters are compared: (a) a simple binary tree
without any back-up transitions, (b) a confirmation tree at level 2 (L2) returning the user
to the top of the tree, (c) a confirmation tree at L2 and one at L3 returning the user to L2,
and (d) a confirmation tree at L2 and one at L3 which transitions the user to an option to
go either go back to the top of the tree or to L2. Examples of real applications that would
use such a hierarchy might include selecting one out of eight applications to use, one out of
eight browser links or typing a series of numbers (with a small increment to 10 letters in
the menu alphabet).

The FSMs corresponding to each hierarchy are shown graphically in Figure 3.2. For each
of the FSMs, a simulation run with 10000 trials were simulated for the selection accuracies
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0.7, 0.8, 0.9 and 1.0. Simulations using the same number of trials have been reported in
the literature (e.g. Müller-Putz et al. (2008)). Discrete values were selected for convenience
and 0.7 was selected as the minimum selection accuracy required for reliable communication
(see Section 2.2.4).

The analysis compares the performance of two task types: either redoing selections until
they are selected, or requiring to select an ‘undo’ character. In the case of a redo task,
selected letters are placed on the stack. The task is complete if the order of letters on the
stack matches the order of letters in the target word. If an incorrect letter (a letter that
is not the next target letter in the sequence) is selected, the stack is emptied. An FSM is
considered infeasible for a particular selection accuracy if the number of times the stack is
emptied reaches 100 (intuitively, a user might give up on their selection after being unable
to attain it this number of times). For an undo task, the selected letters are similarly
placed on the stack; however, upon selecting a wrong letter, the user has to select the letter
designated as the ‘undo’ character in order to delete the wrong letter, before carrying on
with the selections. The FSM is considered as infeasible if the number of letters on the stack
reaches 15 more than the letters in the target word (preliminary experiments indicated that
with this number of errors, it is difficult to make a recovery). The average number of
selections (trials) required per bit is then calculated and compared with the theoretically
optimal selections per trial.

The time taken to complete tasks are compared with a potential speed-accuracy trade off
where the range of times for making a selection is taken to be between 1-8 seconds. 1
second is a reasonable estimate for the minimum expected length of time required to make
a single selection with a BCI, while 8 seconds was used for the maximum expected time
as a BCI researcher suggested in personal communication that it is difficult for a person
to continue imagining a limb movement for longer than this length of time. Thus for each
menu hierarchy and task type, a simulation run was completed for each of the selection
accuracies {0.7, 0.8,.. 1.0}, for each selection times {1, 2,.. 8} seconds, with the aim of
investigating a possible interaction between the selection accuracy and TTS for the given
menu hierarchies.

3.5.1 Binary menu hierarchies not requiring an undo or delete option

Effect of increasing number of letters on the required number of selections per
bit. Figure 3.3 shows Box plots of the number of selections per bit of information over
the selection accuracies (columns) and number of letters in a word (rows). As the number
of selections required increases, the best FSM to use also changes. It can be seen that for
p=0.7, a simple binary tree (FSM (a)) is the best option for selections requiring only one
or two selections in terms of the average number of selections required. As the number of
selections required increases, however, the FSMs with built-in error correction mechanisms
allow the user to achieve the task within a lower number of selections per bit in comparison
to the binary menu selection. For example, for selecting two consecutive letters, the average
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(b) Back-to-top at Level 2
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(c) Back-to-top at Level 2, Back-to-L2 at L3
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(d) Back-to-top at Level 2, Confirm L3

Figure 3.2: Menu hierarchies investigated in the chapter. Error correction mechanisms in
the form of back-up transitions allow a user to transition back up the tree as
soon as possible after realising that the wrong selection or transition has been
made. Simulations are run to investigate where back-ups provide the best (if any)
improvement in performance over the binary tree.
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number of selections required for FSM (a) is 34.4, 31.8% fewer selections per bit than
the theoretical minimum, while that for FSM (d) is 47.2, 6.7% less than the theoretical
minimum. However, to get 4 consecutive letters the average number of selections required
for FSM (a) is 323.7, 220.0% more selections per bits than the theoretical minimum, and
for FSM (d) it is an average of 146.1 selections and 44.6% over the theoretical minimum.

An interesting result is that one FSM may ‘win’ on the average number of selections required,
but have a lower variance and lower expected maximum than another FSM. For example,
for a p of 0.9, the average number of selections per bit for spelling 5 letters is 2.8 for FSM
(a), and the 95% PI range is (1.0–8.8), while for FSM (d) the average is 2.4 with a PI
range of (1.7–4.1). Thus, while the average number of selections needed is somewhat lower
for a simpler FSM (a), the expected upper range is more than twice that needed for the
more complex FSM (d) with error corrections within the menu hierarchy. For the FSMs
considered here, the phenomenon does not occur for selection accuracies of 0.8 or 0.7, where
the trend of the average and variance always correspond to one another relative to different
FSMs.

Speed-accuracy trade off. The speed-accuracy trade off is examined in Figure 3.4,
where the purpose is to find out the extent to which trading off a higher p for a longer TTS
(making decisions more certain at the cost of taking a longer time to accumulate evidence)
can increase the time taken to select words. For selecting a small number of letters in the
redo task, a lower selection accuracy but a quicker selection rate decreases the time it takes
to spell the word. For example, a p of 0.7 with an average 3 second TTS is likely to take
between 9 and 81 seconds, while a p=0.8 with an average TTS of 5s is likely to take between
15 and 90s. For two letters, a p=0.7 and TTS of 3 seconds (mean 103.3s, PI range 18-342s)
is an improvement over a p=0.8 and TTS 7s (mean 160.3s, PI range 70-378) in terms of
both the average and the variance. If the TTS for p=0.7 can be reduced to 2 seconds (mean
68.9s, PI range 12-228s), this is better than for 0.8 accuracy at 5 seconds (mean 114.5s, PI
range 50-270s).

As the number of letters per word increases, a trade-off can only be exploited if the selections
for the lower selection accuracy reaches 1 second. For example, at 5 letters per word, a p=0.7
and TTS of 1s has an overall lower task time (mean 227.2s, PI range 46.0-726.0s) than a
p of 0.8 and TTS=5s (mean 340.1s, PI range 155.0-800.0s). For a p=0.8 and TTS 4s, the
mean task time is longer at 272.1s; however, the PI range is 124.0-640.0s: the upper bound
on the task time is lower than for p=0.7. On the other hand, if TTS for a p=0.8 can be
reduced to one second, this reduces the expected time-to-task to 62% of the expected task
time for selection accuracy 0.9 and 3 second TTS (mean 108.7s to 68s; PI range 75.0-183.0s
to 31.0-160.0s).
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Figure 3.3: Box plots of the number of selections per bit required to select letters from an
alphabet where the task is simply to redo the selection if the wrong letter is selected
(lower values are better). The rows represent the number of letters requiring to
be selected in sequence (1-5), while the columns are the selection accuracies 0.7,
0.8, 0.9 and 1.0. Box plots correspond to the FSMs (a)–(d) in Figure 3.2. An
absence of a Box plot indicates that the task was not achievable for the particular
selection accuracy-FSM combination. The percentage number of selections per bit
more than the theoretical minimum required for a binary symmetrical channel is
displayed for each FSM on the x-axis label.
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Figure 3.4: Comparison (mean and 95% percentile range) of selection accuracies p (columns)
and time-to-selection (TTS) on selecting 1, 3 and 5 letters out of 8 (rows) for 4
FSMs, for redoing letters if an incorrect letter is selected. Values are shown for
the best FSM for each selection accuracy, where the best FSM is the one with the
lowest upper PI bound on the number of selections per bit.
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3 Simulating Binary, Discrete Selection

3.5.2 Binary menu hierarchies requiring an undo or delete option

Effect of increasing number of letters on the number of selections required per
bit of information. The distribution of the number of selections per bit required to spell
words of 1-5 letters are shown for each of the FSMs in Figure 3.5. It can be seen that if only
the average number of selections per bit are taken into account, different interfaces are the
best for different selection accuracies. The best FSM is the same regardless of the number of
letters in a word, but the average number of selections per bit required to complete the task
(spell a word) increases as the number of selections increases. Based on averages, FSM (d) is
the best for selection accuracies of 0.7 and 0.8, while FSM (a) is best for selection accuracies
0.9 and 1.0. for p=0.7 and selecting 2 letters, the task is impossible with a simple binary
tree (FSM (a)), but requires 31.5% more selections per bit than the theoretical minimum,
with an average of 62.2 selections. Selecting 4 letters requires an average of 130.9 selections,
which is 38.4% selections per bit more than the theoretical minimum of 8.4 selections per
bit.

Again, for p=0.9 it is found that although the average number of bits per selection is lower
for FSM (a) than for FSM (d), the 95% PI has a larger range for FSM (a) than for FSM (d);
this corresponds with a lower expected upper bound on the number of selections per bit for
FSM (d). The average number of selections required per bit increases from 2.1 for selecting
one letter to 2.3 for selecting a word with 5 letters using FSM (a). However, the range
decreases from (1.1-9.6) to (1.1-5.6). For FSM (d), 2.5 selections per bit are required for
words with 1-5 letters. Again, the range decreases from (1.8-5.7) to (1.8-3.9). Interestingly,
for all the FSM-selection accuracy combinations, the average number of selections per bit
increases as the number of letters in a word increases but the upper bound decreases.

Speed-accuracy trade-off. Figure 3.6 compares the effect of 1–8 second TTS on the
expected times required to spell words that are 1–5 letters long. It can be seen again that in
comparing the task times, both the average and range of times should be taken into account.
For example, for spelling one letter with a p=0.7 and 2s TTS, the average expected time is
lower than for p=0.8 and TTS=5s (mean 56s compared with 57.2s), but the upper bound on
the expected 95% PI range is higher (10.0-268.0s compared with 25.0-175.0s). To do better
than the expected range, the TTS for p=0.8 must be around 8s (mean 91.5s, PI range 40.0-
280.0s). At 2 seconds, a selection accuracy of 0.9 is always better than a selection accuracy
of 0.7.

Spelling one letter with a p=0.7 and 1s TTS (mean 28s, PI range 5.0-134.0s) allows a lower
expected task time over a p=0.8 and 4s TTS (mean 45.7s, PI range 20.0-140.0s). This is an
average time saving of 39%. A similar trend is found for selecting 5 letters (mean 164.9s,
PI range 46.0-451.0s for p=0.7 and mean 239.9, PI range 124.0-456.0s for p=0.8, 32% time
savings), showing that there is value in trading off a faster TTS for a lower p at p=0.8.
However, the average time taken to spell a 5-letter word with p=0.7 at 1 second per selection
(164.9s) is less than that for a p=0.9 at 5s per selection (177.8s), the PI range is considerably
larger (46-451s compared with 125-275s). Even at a TTS of 8s, the selection accuracy of
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0.9 provides a lower expected range of task times (mean 284.6s, PI range 200.0-440.0s).
However, here the expected time for p=0.7 is 42% less than p=0.9.

For spelling a 5 letter word, going from p=0.8 to p=0.9 is better when a 2s TTS for p=0.8
(mean 120s, PI range 62.0-228.0s) is compared with a 5s TTS for p=0.9 (mean 177.8s, PI
range 125.0-275.0s). If the time can be reduced further to 1s (mean 60s, PI range 31.0-
114.0s), this is better than a p of 0.9 at 3 s (mean 106.7s, PI range 75.0-165.0s).

3.5.3 Discussion

This section demonstrated how task performance in terms of the number of selections and
time required could be estimated using FSMs to represent menu hierarchies, and a model of
the user represented by the selection accuracy (p) and time taken to make a single selection
(time-to-selection, TTS). The performance metrics considered were the number of selections
[per bit of information] and time taken to complete tasks, and the independent variables
apart from those in the user model were the task type, redo or undo, and the number of
letters in a word.

It was shown that the best FSM to use for a given p depends on the nature of the task. For
the redo task, the best FSM for selecting one or two consecutive letters or menu items is
the binary tree without any built-in error correction mechanism. However, as the number
of consecutive letters to be spelled in succession increases, the best FSM to use may be one
that requires more opportunities for correcting mistakes before reaching the end of the tree.
For the undo task, the choice of FSM remains the same for increasing numbers of letters
in a word. (It is important to note that for the redo task, the number of selections per
bit is less than the theoretical minimum because it does not provide the same amount of
information as the undo task; nevertheless the values are reported for comparison.) The
finding suggests that in selecting an FSM to use, the nature of the task should also be
taken into consideration. To optimise the task performance for a given application, it may
pay the designer to think carefully about what the application should achieve and how the
user will wish to use it. For example, in choosing a paintbrush in a menu, if the wrong
one is selected it is possible to just select it again; in this case a binary menu can be used.
However, on applying the paintbrush the user will likely wish to undo or delete mistakes; in
this case an FSM with back-up options will be more efficient. The example also highlights
the difference between tasks where future ‘letters’ selected either have or do not have an
impact on previous letters selected, and between ‘letters’ (most likely menu options) that
have an immediate effect compared with tasks that are a cumulative product of several
letters (such as in a spelling task).

As the number of letters to be spelled increases, the percentage number of selections required
per bit increases relative to the theoretical minimum. This effect is larger in the redo task
and with lower selection accuracies. It was also found that an FSM having a lower expected
performance may in fact have a larger range, corresponding to a higher upper bound on the
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Figure 3.5: Box plots of the number of selections per bit required to select letters from a 7-
letter alphabet where the task is to select an ‘undo’ option if the wrong letter is
selected. Lower values are better. The rows represent the number of consecutive
letters requiring to be selected (1-5), while the columns are the selection accuracies
0.7, 0.8, 0.9 and 1.0. Box plots correspond to the FSMs (a)–(d) in Figure 3.2. An
absence of a Box plot indicates that the task was not achievable for the particular
selection accuracy-FSM combination. The percentage number of selections per bit
more than the theoretical minimum required for a binary symmetrical channel is
displayed for each FSM on the x-axis label.
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Figure 3.6: Comparison (mean and 95% percentile range) of selection accuracies (p, columns)
and time-to-selection (TTS) on selecting 1, 3 and 5 letters (rows) out of 7 for 4
FSMs, for selecting an undo option if the wrong letters are selected. Values are
shown for the best FSM for each selection accuracy, where the best FSM is the
one with the lowest upper PI bound on the number of selections per bit.
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95% PI, than an FSM that has a higher expected performance. It is important to note that
in designing a user interface with the goal of achieving the best possible user experience,
the user’s perception of task performance is arguably more important than the actual task
performance. Accordingly, it is important to identify the criterion that a user would use to
decide which interfaces are the most pleasurable (or least frustrating). Future work could
thus seek to address whether a user’s perception depends on the expected (mean or median),
mode, lower bound or upper bound of the actual time taken, as this should determine the
metrics the designer uses to compare and optimise FSMs.

The trade-off between speed and accuracy was investigated, showing that in certain situa-
tions there can be a performance benefit to increasing the selection accuracy at the expense
of increasing the TTS for a single trial, and vice-versa. It was seen that, if the time-to-
selection is made considerably lower than has currently been achieved with an MI-BCI, a
lower selection accuracy could match, and even outperform, the time required to complete
tasks. In reality, this is dependent on at least two factors. Firstly, the extent to which
a speed-accuracy trade off can be observed in MI-BCI remains to be explored. Secondly,
whether or not a user can be trained to use an MI-BCI operating at such a speed remains
to be determined. Such a user is likely to be an expert at least in determining the correct
selection to make, even if they are not an expert at the motor imagery task itself.

Although a speed-accuracy trade-off exists wherever there is motor movement, it is possible
that no such trade-off exists within MI-BCI. This may be because, unlike in a reaching task
as with motor movement, the ability of the participant to produce the correct mental state
is an either-or situation. Thus, people who are good at the MI task can already produce
the required mental state quickly, and for these users there is no benefit to decreasing the
TTS to have a selection accuracy that is much worse. On the other hand, for people who
are not as good at the MI task, it is possible that a faster TTS at the expense of a lower
p may in fact be better than a slower TTS at the expense of a higher p, if the TTS can be
reduced to as little as 2s including the preparation time between trials. The findings also
show the benefits of improving the selection accuracy of the user even with a longer TTS if
the minimum trial time cannot be reduced sufficiently.

Thus, trade-offs have been observed in terms of the overall task completion time such that
there are interactions between the TTS, selection accuracy and nature of the task. Informal
interviews conducted with participants evaluating a scanning interface (Bhattacharya et al.,
2008) suggest that a higher selection accuracy with a longer TTS is preferable to a lower
selection accuracy with a faster TTS. Future work could aim to find out the extent to which
this applies to BCI control. It would also be useful to find out whether the user’s perception
of the time taken to achieve tasks depends on the selection accuracy and time of single trials,
or whether it corresponds more to the overall ability to achieve a task and how long the
task takes.
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3.6 Validation with real data

The results from any simulation of a human-computer interface must be taken with caution,
as human factors that had previously not been considered may surface. In BCI, this is
particularly true as the field is relatively new and much research into the psychology of
brain-computer interaction must exist. Comparisons of model predictions with real data
can either help to strengthen and validate the models, or they can highlight weaknesses
in the model for improvement. Either way, obtaining a theoretical prediction of the task
performance for a particular user is useful. In this experiment, data from standard binary
calibration trials were used to predict the performance of a spelling application.

3.6.1 Method

The simulation task was a binary speller which did not use a language model (i.e. there was
uniform probability for selection of each letter, Figure 3.7). Although there was an ‘undo’
option built into the tree, a step back function using electromyography (EMG) was used
instead to step back up the tree, essentially undoing the last command. 6 participants (3
healthy, 3 disabled participants - participant code prefixed ‘pXX’) who had previously been
trained to use a motor imagery BCI attempted to spell the words ‘hello’, ‘email’, ‘computer’
and ‘internet’. As there were no calibration runs carried out on the days of the experiment,
calibration data prior to the spelling experiment was obtained from the experimenter1 who
designed and conducted the experiment. For each participant, 2 or 3 sessions of calibration
runs prior to the experiment were made available.

For each of the participants, the performance from the calibration runs were used to simulate
the spelling task. Namely, these were the selection accuracy and the time-to-selection (time
taken to select a single trial). Two different ways of using the data to simulate the spelling
task were used. In the first case, the average p over all the runs, and the geometric mean
of the TTS across all trials for the last session prior to the experiment was used. If the
performance of the first run appeared to be significantly poorer than the other trials, it was
discarded as this would be taken to be a practice run. Each word was simulated 500 times.
In the second case, each word was simulated 500 times for each run across the last 2 sessions
(similarly discarding practice runs). The recorded metrics were the number of selections
(including undos) and the average time taken to spell a word or a character. 500 runs were
used as the means and variances were found to be fairly constant at this number of runs.
The average selection accuracy was taken over the runs for the last session as this would
lessen the effect of any outliers to achieve a more precise prediction, while the individual
runs from the larger sample were used in order to obtain a wider prediction interval, which
would strengthen the confidence in the simulation.

Model assumptions. As the undo was due to an EMG signal which allowed the user to undo
the last command, this was taken to be fixed at 4 seconds (3 seconds freeze time + 1 second)

1Thanks to Serafeim Perdikis for the data.
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Figure 3.7: Finite State Machine (FSM) for the text entry simulation with no language model.
The system is essentially a binary tree.

as a reasonable estimate and confirming this with the average undo times for 4 users. It was
assumed that the user never made mistakes with the undo command, such that there were
no false positives, and the user could correct themselves every time a mistake was made.
Since the undo command is used to undo the last BCI command, if an undo command was
selected when the state of the FSM was in the root node, the system reverted to the state
before a character was selected. In other words, every time a transition was made, the
previous state was saved in the FSM.

3.6.2 Results

Calibration runs. Figure 3.8 shows examples of calibration runs for 3 participants, a7
(healthy), pAL (end user) and pSI (end user). It can be seen that in general there are slight
fluctuations in the task accuracy. Accuracy for end user pAL improved as the number of
sessions went on. However, for pSI, the performance of the last session was poor, albeit
increasing to a mean accuracy of 0.8 for the last run.

One finding of relevance to the interpretation of the simulation results is that the values
for the integration and threshold from the calibration session were sometimes different from
that of the experimental session. These are parameters which affect the time taken to make
a selection, and in some cases the selection accuracy (which is why optimisation to individual
performance is necessary). To partially correct for this, a constant value was subtracted
from the selection time for each trial where there was a difference between the integration
rate and thresholds. This was calculated as the difference between the minimum time it
would take to make a selection for the integration and threshold values for the calibration
and experimental sessions.

Word predictions. Figure 3.9 compares actual and predicted performance of the spelling
task. In general, the trend of the expected means are in line with the task times, as the mean
absolute error (MAE) taken to spell a word was 1.37min across the simulations from data
for the last session, and 1.70min for the simulations from data from 2-3 previous sessions
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(Table 3.2). The maximum underestimation was -6.31min for participant pLI, spelling the
word ‘internet’ (actual time 11.9min), and the maximum overestimation was 4.02min for
participant pPAL spelling the word ‘computer’ (actual time 7.02min). The mean number
of selections was within -47 and +41 selections for participant pSI spelling the words ‘hello’
and ‘email’ (actual 93 and 28 selections), while the MAE was 10.77 (data from last session)
and 9.34 (data from 2-3 previous sessions, Table 3.1). While the number of iterations was
generally slightly underestimated (-2.51 and -3.53 iterations from the mean for last and
previous sessions), the time taken was generally overestimated (5.58 and 32.44 seconds).
Although the expected means estimated from the last session were, on average, closer to the
actual time than that expected for the model based on data over a longer period of time, the
prediction intervals contained the actual value 95.7% (22/23 words) of the time for estimates
based on 2-3 previous sessions as compared to 39.1% (9/23 words) for the estimates for the
last session. A similar result was found with the estimates for the number of selections
(91.3% for previous sessions and 34.8% for the last session). For comparison, the prediction
intervals from taking individual runs for the last session contained 60% of the actual values
for both number of selections and time to spell a word, and prediction intervals from data
based on the average performance for each of the previous sessions contained 87.0% and
60% of actual values.

Character predictions. From Table 3.3, it can be seen that overall, the average number
of selections per character predicted was fairly close to the real trials, within 1.4 selections
from the actual as predicted from the last session, and 1.7 selections for the runs from
previous sessions. The variance of the time to select a character (Table 3.4) was higher in
proportion to the number of selections, overestimating by as much as 12.6s in the predictions
from the last session and 30.9s in those including a larger number of runs. In general, there
was a slight underestimation of the number of selections and an overestimation of the time
required, although this should be taken with caution as the sample size is small. Although
the MAE was lower for predictions based on trials for the last session than those based on a
larger number of sessions, the prediction intervals for the latter captured the real averages.

Table 3.1: Comparison of the mean predicted and mean actual number of selections over
words. ‘Diff’ is the Mean predicted − Mean actual and ‘Abs Diff’ is the
Mean abs(predicted−Mean actual).

Word Actual Last session 2-3 Prev sessions

Mean Diff Abs Diff Mean Diff Abs Diff
hello 36.50 30.53 -5.97 8.25 29.51 -6.99 10.36
email 28.33 33.81 5.48 10.39 31.66 3.33 7.73

computer 56.50 54.44 -2.06 11.06 51.98 -4.52 7.75
internet 51.60 44.12 -7.48 13.40 45.65 -5.95 11.53
Means 43.23 40.73 -2.51 10.77 39.70 -3.53 9.34
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Figure 3.8: Histogram of time to selection (top 2 rows) and accuracies (bottom row) over
last runs prior to experiment for 3 participants a7 (non-disabled), pAL and pSI
(disabled). In each case, the average selection accuracy and time for correct trials
for the last session, and the individual runs over the last 2-3 sessions were used
for simulating the spelling application. For pAL and pSI, the first run from the
sessions were omitted from use.
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Table 3.2: Comparison of the mean predicted and mean actual timing (seconds) over
words. ‘Diff’ is the Mean predicted − Mean actual and ‘Abs Diff’ is the
Mean abs(predicted−Mean actual).

Word Actual Last session 2-3 Prev sessions

Mean Diff Abs Diff Mean Diff Abs Diff
hello 222.50 243.77 21.27 29.63 261.25 38.75 53.06
email 230.83 275.34 44.51 61.85 287.26 56.43 63.98

computer 458.00 439.42 -18.58 75.96 466.19 8.19 137.58
internet 396.00 371.12 -24.88 152.12 422.39 26.39 129.81
Means 326.83 332.41 5.58 79.89 359.27 32.44 96.11

Table 3.3: Average number of selections per character for actual and simulated trials. Diff is
the simulated− actual number of selections.

Participant Actual
(±SD)

Last session 2-3 Prev sessions

Mean (95% PI) Diff Mean (95% PI) Diff
a7 4.8 (0.2) 5.8 (4.6, 7.0) 0.9 6.0 (4.6, 9.2) 1.2
b2 6.2 (0.8) 4.9 (4.6, 5.0) -1.4 5.1 (4.6, 6.5) -1.1
e7 5.6 (0.7) 5.8 (4.6, 7.2) 0.1 5.5 (4.6, 9.0) -0.2

pAL 6.4 (1.5) 5.2 (4.6, 6.0) -1.2 5.6 (4.6, 8.0) -0.8
pLI 6.1 (1.4) 5.2 (4.6, 6.0) -0.9 5.5 (4.6, 8.2) -0.6
pSI 11.7 (5.3) 12.7 (8.2, 18.4) 1.0 10.0 (4.8, 25.2) -1.7

Mean 6.80 6.58 -0.22 6.28 -0.52
(MAE 0.92) (MAE 0.91)
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Figure 3.9: Actual and simulated prediction of number of selections (left column) and time
taken (right column) to spell 5 words, for 6 participants (pXX denotes participants
with motor disabilities). Actual (purple), average of simulated runs for calibra-
tion data from last session (blue, 95% PI) and simulated runs over calibrated data
from last 2-3 sessions (green, 95% PI) are shown for each participant. Each par-
ticipant spelled each word once. Note that pSI stopped after completing the word
‘computer’ and did not spell the word ‘internet’.
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Figure 3.10: Actual and predicted values of the average number of selections (top) and time
taken (bottom) to spell a character for 6 participants. Actual (purple, ±SD),
average of simulated runs for calibration data from last session (blue, 95% PI)
and simulated runs over calibrated data from last 2-3 sessions (green, 95% PI)
are shown for each participant.
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3 Simulating Binary, Discrete Selection

Table 3.4: Average time to select a character for actual and simulated trials (seconds). Diff is
the simulated− actual times.

Participant Actual
(±SD)

Last session 2-3 Prev sessions

Mean (95% PI) Diff Mean (95% PI) Diff
a7 33.6 (2.0) 46.2 (45.0, 47.4) 12.6 41.9 (40.5, 56.9) 8.3
b2 36.4 (3.3) 43.0 (42.8, 43.2) 6.6 37.4 (36.8, 42.0) 1.0
e7 45.3 (10.0) 51.4 (50.2, 52.8) 6.1 46.7 (45.9, 119.7) 1.5

pAL 48.4 (7.0) 47.8 (47.2, 48.6) -0.6 79.3 (78.3, 84.8) 30.9
pLI 51.4 (19.8) 39.6 (39.0, 40.4) -11.8 55.1 (54.2, 52.4) 3.7
pSI 89.6 (18.4) 89.7 (85.2, 95.4) 0.1 76.5 (71.3, 133.5) -13.1

Mean 50.77 52.95 2.18 56.15 5.38
(MAE 6.29) (MAE 9.75)

3.6.3 Discussion

A detailed analysis of the individual cases is interesting. For participant a7, the prediction
consistently overestimated the number of iterations and the time to selection. This can
be explained by the fact that in all 3 of the sessions prior to the experiment, the overall
selection accuracy was less than 1.0, while during the spelling experiment, the participant’s
performance was perfect. This could be due to individual variation in performance between
sessions. However, it is possible that some psychological factors arising from the nature of
the task for this particular user led to an improvement in performance. For example, in
the application, the time between selections (the time between selecting either left or right
and the next time the feedback moved) was 3s, which is longer than is usually the case for
the calibration trials. In addition, the participant chooses the direction of selection, instead
of being told what to select. Thus, it is possible that the participant is better prepared to
start the selection and thus performs better.

On the other hand, for participant b2 the prediction systematically underestimated per-
formance in terms of the number of selections to select a word or character. Similarly, for
participants pAL and pLI, the time taken to spell the words ‘hello’ and ‘email’ were within
the confidence limits predicted from the last session, whereas for the words ‘internet’ and
‘computer’, the number of selections actually required by the user were in the upper limit of
the prediction interval from the individual runs. This indicates that there was a higher error
rate for longer words than there were for shorter words, which may be due to an increase
in cognitive workload or stress.

The mean predicted times were the furthest off the mark for pAL, where the mean pre-
dictions from the individual runs over 2 sessions consistently overestimated the task times.
It is possible that differences in the integration and threshold of selection may have been
different between sessions, leading to an incorrect estimate in the time taken to make a
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3.6 Validation with real data

selection. For example, for participant pAL, the integration rate from previous sessions was
0.98, while in the actual experiment it was 0.95. This is a much slower rate of integration,
with a minimum difference of around 2.5s per selection. Although a constant was removed
from the total selection time, it is difficult to determine whether it sufficiently corrects the
bias, as on one hand the figure is unlikely to be a constant, increasing as the calibration time
increases, and on the other hand this may have improved the user’s accuracy at the time.
However, the difference may also have been due to variation in performance over different
days, or to a difference due to the nature of the task, and thus it is useful to have a wider
confidence interval which predicts the best and worst performances.

Finally, pSI did not manage to complete the experiment, choosing not to spell the word ‘in-
ternet’. The time predicted for spelling the word ‘computer’ was 12.5min (actual 15.2min),
which was far above the prediction for any of the other users for simulations with data cal-
ibrated from the last session (6.6min for pAL, although the less conservative estimate was
11.0min). On the other hand, the time predicted for pLI to spell the word ‘internet’ was
underestimated by almost half the time (11.9min actual compared with 7.6min predicted
from the last session), which may have occurred due to fatigue as this was the last word
spelled. However, this was the only substantial underestimation of task times from the
predictions. Thus, simulation can at least be useful for predicting when a user would be too
tired to actually perform a task.

The number of selections required for a spelling task is generally used as a performance
measure in optimising binary spelling tasks. However, as there may be a speed-accuracy
trade off where the number of selections increases due to error, but do not proportionally
increase in time (time per selection decreases), it is beneficial to provide an estimate of
the likely task times for a participant. This may have been seen in participant pSI, as the
number of actual selections did not generally correspond to the predicted task times. For
example, in spelling the first word, the number of selections was much higher than predicted,
but the task time was comfortably within the range of the predicted interval. This may
have occurred for several possible reasons. Firstly, the differences could be due simply to
individual variation in performance between sessions or misrepresentation of the base line
performance. Secondly, the number of selections in the real data may contain a higher
number of undos than in the simulated trials. This might happen as it was assumed that
the user does not make mistakes with the undo. If mistakes were made while trying to select
the undo, this would increase the number of selections. A related issue is a psychological
one: the speed-accuracy trade-off may be due to a psychological effect of knowing that it is
easier to correct mistakes, and the user might thus not try so hard for each selection, thus
reducing the average time to select a character compared to the BCI calibration trials. On
the other hand, the stress or cognitive workload may have led to an increase in the error
rate, while motivation may have led in some cases to a decrease in error rate (as in with
a7). Thus, additional data would be required to assess the contribution of various factors
in the deviation from expected performance as predicted by the simulator.
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3 Simulating Binary, Discrete Selection

The simulation analysis provides preliminary evidence that data from the session prior to an
experimental session provides a useful ballpark estimate for a user’s performance for a future
session, in terms of the number of selections as well as the time required to achieve tasks. In
general, the task performance during the calibration trials does not differ significantly from
the experimental trials. Thus, simulation of task performance would be useful in providing
estimates of the time it would take users to complete tasks, either for the purposes of
experiments, actual application use, or communication with stakeholders. However, the
95% prediction interval which uses data from the individual runs over 2 or more sessions
may better capture a best estimate of the best and worst expected performances. As the
sample size is small, additional data would be required to provide additional confidence in
the simulation results, to investigate further the reasons for deviations between simulation
and actual results, and to determine which datasets and metrics provide the best prediction
for the achievability of a task for a given user. It would also be interesting to compare the
results with data that used a optimised speller.

3.7 General Discussion

In this chapter, it was demonstrated that offline simulations can be used to provide pre-
dictions of task performance in terms of the expected number of selections required and
how long it would take for a user to carry out a task. Task performance between possible
FSM structures, individuals and tasks can be compared and validated with real data. An
advantage of using the simulation approach over analytic approaches is that it requires little
or no mathematical knowledge, such that someone who is unfamiliar with graph theory or
combinatorics can obtain predictions to improve or explore an existing menu design. It
is also difficult to calculate expected performance metrics for specific tasks, but easy to
generate these using simulations. Obtaining a distribution over the expected time it would
take a user to complete specified tasks can help in planning experiments and ensuring that
users are not too fatigued. Evaluating a task by the amount of time it would take a user to
complete can also help the application designer by highlighting problems with the interface.
If they know that it will take a long time to complete a task, the designer may well be
motivated to streamline, simplify or customise the application further in order that a user
can complete the tasks that are important to them in the shortest period of time and lowest
effort possible.

The method used to design or optimise a menu hierarchy should depend on the application
one wishes to develop. For a small number of letters in the alphabet and a uniform prob-
ability of selections, a variety of FSMs can be built and explored manually. A graphical
user interface might allow a designer to drag and drop states and transitions to build and
compare for task performance for a given set of user models. This can allow a designer to
find ‘good enough’ solutions without requiring to compute complex calculations. As the
number of letters in the alphabet increases, however, the number of possible configurations
of FSMs increases rapidly, especially as non-uniform probabilities of letters and placement
of back-up and delete nodes are taken into account. This makes it infeasible to explore
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every FSM using the methods described. One approach to overcome this might be to break
the large item selection into several sets of smaller menus, and select the combination of
menus that lead to the best performance. Simulation is also used in combination with other
techniques. For example, theoretical predictions are usually validated with with simulations
(e.g. Bianchi et al. (2007)), and it would be possible to select the best tree structures out of
a set that has been narrowed down using optimisation techniques. Here, a further benefit
of using simulations is that the variance in task performance can be easily obtained, which
cannot be so easily derived.

The current chapter explored only a single user model, assuming that there are no cognitive
effects of the user interface on the user’s performance. More complicated models can be
used which update the selection accuracy and time to selection, such as where a user’s
performance is likely to deteriorate after some period of use, or frustration with the system
after being stuck in a menu loop for a period of time. The user’s level of motivation can
similarly be built into the model by increasing or decreasing the selection accuracy and
time-to-selection accordingly. It is possible that this would improve the accuracy of the
predictions with respect to real data, and enable a designer to further explore the expected
benefits and costs of particular menu hierarchies.

3.8 Conclusions

In summary, this chapter highlighted the benefits of using offline simulations of a discrete,
binary control paradigm to investigate user performance in different control settings. A
benefit of simulation rather than analytic approaches to estimating a theoretical expected
value is that simulation can provide estimates of the expected distribution and range of
task performance, in particular for how long it will take to complete a task. In addition,
the expected variance of task performance is captured easily, which adds information to the
expected performance. It was shown that the speed of individual selection times as well as
the accuracy can affect the bit rate, such that the overall task time can be shortened if the
TTS can be reduced to one or two seconds at a lower selection accuracy. Comparison of the
offline predictions using simulation with online BCI performance shows that the results are
comparable, validating the use of offline simulations for the estimation of task times and
task performance. Providing that there are no cognitive issues or difficulties with navigating
the user interface, the offline estimations are a good indicator of task performance.
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4 Simulating the feel of Continuous Control

Summary. This chapter describes the development and validation of a simulator which
models the classifier output of a specific 2-class Motor Imagery system, discussing the ben-
efits and limitations of different signal generation and simulation techniques that were ex-
plored. Whichever method is used, the goal is to flexibly reproduce signals that model a
particular user, in order to obtain some useful information about a system. In terms of
research, modelling the user may lead to new insights about the nature of Brain-Computer
interaction, while simulation can also be useful for designing applications or optimizing
parameters for a control paradigm to achieve optimal performance.

4.1 Introduction

Chapter 3 investigated the value of simulating discrete selections to predict performance,
as measured by the selection accuracy and time taken to make a decision. Although useful,
this level of simulation is limited in that it is useful for offline analysis but does not allow
one to explore other types of control paradigms, or to understand what it might actually
feel like to use a BCI system. This chapter describes the methods used to build a simulator
whose purpose is to capture the properties of BCI control that are important to design and
to the subjective feel of using the interface. The argument is that such a simulator can
be used to reduce the cost of developing and designing applications for BCI. As elaborated
upon in Chapter 2, this can be done either by carrying out offline simulations to predict
performance, or by being used in an online simulation mode with a human being in the
loop. The online simulation mode is useful for

1. providing designers with a tool that enables them to experience what it is like to use
a BCI, without needing to actually use a BCI

2. providing a means for communication with stakeholders, enabling them to understand
how a BCI works and feels

3. allowing developers to develop and debug BCI applications easily, as real BCI input
can be directly replaced by the simulator

4. performing usability tests of a novel control paradigm or application without users
requiring to use a BCI.
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4.2 The level of simulation

The sections of the chapter follow through the process used to build the simulator, detailing
what is being simulated, the model assumptions, signal measures that have considered,
modelling approaches used and the evaluation of the resulting models.

4.2 The level of simulation

In considering the level at which the output of the simulator should be aimed, its purpose
should be taken into careful consideration. While simulation at a high level may be less
costly, important details may be missed. Conversely, simulation at a lower level may be
more complex or difficult, incurring unnecessary costs if it is more complex than required
for the purpose. In an MI-BCI, the following levels, arranged from high to low, can be
distinguished as follows:

• EEG. Simulation at the level of EEG has been investigated to improve signal process-
ing, artifact removal, feature extraction and classification techniques in BCI (Tanger-
mann, 2012). Building a model of the EEG has also been used to understand the
origin of neurophysiological signals, such as the ERP (Yeung et al., 2004). Yet it may
be argued that simulation at this level is overkill for the purpose of designing and de-
veloping applications for BCI, as the complexity of EEG and number of signals (one
signal for each electrode used) needing to be simulated, may reasonably incur greater
time costs than simulating a signal that incorporates this information. Modelling the
control characteristics of interest becomes more complicated when having to consider
these aspects as well as the signal processing and feature extraction tools required
to obtain a useful signal. For our purposes as a tool for design and development,
simulation at higher levels may thus be easier and more valuable, if the important
information can be captured.

• Classifier Output. The signals resulting from ‘cleaning up’ the EEG are typically
fed into a machine learning classifier whose output is a single value or vector of values.
These can be used by an application or control paradigm and are typically generated
at a constant rate of several per second. As the output of the classifier is noisy (Fig-
ure 4.1), it is typically integrated (accumulated) in some way over a few seconds; this
allows time for the system to gather evidence about the user’s actual intent. Simu-
lation at this level is interesting as it can potentially be used to explore or optimize
parameters for different integration methods. Relatedly, it can also be used to ex-
plore new control paradigms that would rely on the classifier output at this level. A
complexity is that the type of classifier used must be taken into account in order to
provide input that a BCI application expects. Figure 4.1 provides examples of the
output of 3 different types of classifiers which give different ranges of signals. A prob-
abilistic classifier will have real-valued outputs between 0 and 1, while an LDA will
have a output as a measure as a distance from some hyperplane which separates the
two classes. An output simply labelling the discrete classes may also be used. The
distinction is important as it constrains the measurements and methods that can be
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Figure 4.1: Examples of classifier output from different classifiers, showing the difference in
output values. At t = 0 the target is shown to the user, while at t = 1 the feedback
cursor begins to move. Left: LDA classifier; output is a distance from 0. Centre:
Probabilistic classifier as used in this thesis (Millán et al., 2004); output between
0 and 1. Right: Discrete class decisions; output is 0 or 1 at each time step. Note
that the three graphs are data from real experiments, taken from unrelated trials.

• Integrated Classifier Output. As previously mentioned, the classifier output is
accumulated over time by some method of integration. This enables the system to
gather evidence about the user’s intent before making a discrete decision. This is the
value that is usually mapped to whatever feedback is presented to the user given a
control paradigm, and is therefore directly related to the feel of BCI control. Again,
to directly simulate the output at this level, one must take into account the type of
integrator that is used. Figure 4.2 shows the different characteristics of two integration
methods. In the subfigure on the left, the speed of the feedback will be variable, while
the speed of the feedback produced by the stepped integration method on the right
will be constant. Properties of the feedback such as the speed of movement may lead
to a difference in the perceived or actual control the user has on the system; this is as
yet an unexplored area of research in the BCI literature.

• Discrete decisions. Thresholding the value of the integrated classifier output leads
to the system’s decision about the selected class. Again, simulation at this level was
the focus of Chapter 3, and as previously mentioned, does not capture level of detail
required for simulating the feel of continuous control. However, the output of the
classifier certainly gives rise to this and as such it will form one of the measurements
of the quality of the simulator.

Thus, the outputs chosen for the simulator are 1) the output of the classifier and 2) the
integrated classifier output. These are most relevant for the purpose of simulating the feel
of control of a BCI, as these stages result in the accumulated effect of the processing at
the lower stages. Furthermore, as the integrated classifier output is usually straightforward
to calculate, simulation at this level can easily be used as input to an application. The
remaining factors in deciding which of the two signals to directly simulate pertain either to
which method provides a more realistic or useful output for the topic of interest, and which
are simply easier to use.
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Figure 4.2: Integration of classifier output.

Another way of looking at the level of simulation is the input method used to simulate the
BCI system. As there is other input method that shares the same characteristics (hence
we try to simulate it!), suitable inputs must be selected. Keyboard input was chosen in
the current work as it provides a simple discrete input to the system. Pressing the shift
keys correspond to either imagining movement of the right hand or left hand. Although this
requires the user to use both hands, it does not provide the user with the sense of continuous
control, nor does it generate any uncertainty (from the user’s point of view) about what the
input to the system is. Again, this demonstrates the cost-benefit-stage-of-simulation trade
off that is required in making modelling decisions.

4.3 General Model Assumptions

Understanding of the BCI process and levels of simulation, and the development of the fol-
lowing model assumptions, were made possible not only by becoming familiar with current
literature, but also by consulting with BCI researchers. In particular, the conceptual model
of the process (Figure 4.3) was built by sitting down with a BCI expert and clarifying the
stages in the control loop of a BCI. At each stage of this model, the control characteris-
tics arising from that stage were identified, which were then used to develop the resulting
assumptions. For this 2 class MI system, 3 states left MI, right MI and idle are defined
corresponding to the mental state the user intends to be in (Figure 4.4). The idle state
covers all other mental states where the user is not intentionally trying to control the BCI.
Delay in the system arises due to several sources at different stages. These can be modelled
either as a constant, or variable delay in switching between mental states.
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Figure 4.3: Stages in the process of an MI-BCI system, displaying the control properties arising
from each stage. Grey boxes denote the stages at which the output is simulated
in the simulator described in this chapter.

Not everything in the conceptual model is accounted for with the current simulators. In this
first approximation, loss of control that would occur for some people after trying to imagine
the same movement for an extended period of time is not considered. The closed-loop
feedback of interaction between the subject’s thoughts and the influence of feedback, as well
as the longer term deterioration in performance that would occur due to fatigue or stress
(Blankertz et al., 2010), are also not modelled. However, the flexibility of the simulator
allows for additional simulation blocks or tools to be added as the model is improved.
Additional assumptions must be made specific to the methods and approaches used and are
stated as they arise in later sections.

left
idle

right

Figure 4.4: States identified for a 2-class MI-BCI, representing the intentions of the user. In
the ‘idle’ state, the user does not wish to select anything. The left and right states
correspond to two mental classes which is usually a combination of left hand, right
hand or feet motor-imagery. In this representation, the user can switch between
the ‘idle’ state and a mental class, or directly between mental classes.

4.4 Measures of BCI Signal Properties

In order to describe, analyse and compare simulated and real data, quantitative measures
must be employed at different levels of the system. Some of these measures may be used to
evaluate or validate the models, while others will be used to develop the models. Graphical
plots are used to visually analyse the data for patterns and possible models, while statistical
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tests aid in determining the fit of the data to models and distributions.

The selection accuracy (defined here as the probability of the integrated classifier output to
terminate at a certain threshold) and time-to-selection have been described in chapter 3. In
addition to these, metrics used to describe the trajectory of the [integrated] classifier output
should be used to capture the properties of the time series, although it is as yet unclear
what quantitative measures map to the user’s perception of the feel of control. Standard
techniques for time-series analysis, which can be categorised into time domain and frequency
domain analysis. Examples of time domain analysis are the autoregressive moving average
model (ARMA) and autocorrelation, while an example of frequency domain analysis is the
Discrete Fourier Transform.

The Fast-Fourier Transform (FFT) is an algorithm used to represents a signal in the fre-
quency domain (a very clear and practical textbook on the subject is Smith (2002)). Es-
sentially, any signal can be broken down into, and reconstructed from, a sum of sine waves
whose frequencies are between 0 and half of the sampling rate of the signal. The real FFT
can be represented in two ways. The rectangular notation represents the signal as a set
of scaled sine and cosine waves, while the polar notation stores the magnitude (amplitude)
and phase (angle) of the set of cosine waves. The frequency components of the signal relate
to the feel of control of cursor feedback as this influences the oscillations in the feedback;
for example high frequency components would produce fast back-and-forth movements in
the cursor, while low frequency components can represent the drift of the signal.

Autoregression models a stochastic signal by assuming that that each signal at time t is a
weighted sum of previous observations plus noise (and optionally a constant), such that the
signal at Xt is given by

Xt =
p∑
i=1

θiXt−i + ut

where p is the order of the model, θi are weights and u is a random variable drawn from an
independent, identical distribution. The moving average model

Xt =
p∑
i=0

θiut−i

assumes that the signal at Xt is a combination of the previous inputs. The Box-Jenkins
methodology is a widely used methodology for estimating the parameters of the model for
a particular signal.

Autocorrelation is a measure of how samples in a signal are related to one another. If A is
the signal and At is a sample at time t, then the autocorrelation of the signal with lag k

is the degree to which samples At vary with At+k. The autocorrelation gives a measure of
randomness in the signal. The classifier output should covary at least at k = 1 since the
output is essentially a transformation of a moving average of the raw EEG signals.
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4 Simulating the feel of Continuous Control

Distributions of the position, velocity and acceleration of the time series may be used to
compare the classifier output signals. The classifier output is directly related to the selection
accuracy of the user and may influence the speed and acceleration of the feedback if an
exponential smoothing integrator is used. The speed and acceleration of the integrated
classifier output are directly related to the feel of control of the system. One can speculate
that a constant speed and acceleration may enable the person to feel more in control, and if
speed and/or acceleration is too fast, the user may feel that they are not in control. These
can represented as histograms where the actual values are binned into ranges of values. The
histograms may be compared using the Kullback–Leibler divergence (Kullback and Leibler,
1951) which is an information-theoretic measure of the difference between distributions given
by

D(P ||Q) =
∑
i

Pi log
(
Pi
Qi

)

where P represents the real data is the and Q the simulated data. All of these methods
make the assumption that the signal is stationary; that is, the properties of the signal do
not change over time. For this first exploration into simulation of the classifier output of
a BCI, this chapter makes the assumption that this is the case within each mental class or
state. In reality for a BCI signal, this is unlikely to be the case for several reasons. Firstly,
the feedback likely influences the classifier output as a function of how much control the
person has and this is not taken into account. Secondly, the properties of the signal may
change in some time-dependent manner that is more complex than is currently represented.

4.5 Modelling Approaches

Simulation modelling approaches can be categorized into those that are generative or data-
driven. A generative approach begins by building a mathematical or other computer model
of the system. Parameters of the model can be fit to data either manually or by an opti-
mization algorithm. The benefit of this approach is that by changing the model parameters,
one can easily generate simulated data for individual characteristics that are possible, but
for which no data are currently available. The approach also allows for testing model as-
sumptions and hypotheses to understand a specific phenomenon. By contrast, a data-driven
approach simulates a system by producing a large number of transformations of real data. A
benefit of this might be that it is less complicated in terms of fitting the model parameters.
It should be noted that a complex simulation model may have multiple components that
use both approaches.

Another way of looking at approaches to modelling are top-down and bottom-up approaches.
These define the starting point of the model: a top-down approach begins with modelling
the high level features followed by the low level features, while a bottom-up approach looks
at the low level features which produce the high level characteristics. In our specific case, a
top-down approach would model the system at the level of discrete selections (accuracy and
time-to-selection), followed by the time series of the integrated and pre-integrated signals.
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4.5 Modelling Approaches

Two examples of bottom-up techniques are now described. These attempt to capture the
low-level feel of the system by simulating the (pre-integrated) classifier output over time.
An example of a top-down, data-driven approach might be to add noise to the average time
series of the integrated classifier output over some number of trials. A top-down, generative
approach might instead start with a model of the linear trend taking into account the high
level summary statistics of performance.

4.5.1 A bottom-up, generative approach using a Markov Chain model

A Markov chain is a process where at any discrete point of time, it is in one of the states
{s1, s2, s3...} in the set S. At each time step, there is a probability of either staying in the
same state or transitioning to another state in the set, such that for each state si, there is a
probability pij of transitioning from si to sj in the next time step. In the current model, a
Markov chain is defined for every intentional state in the 2-class MI-BCI, left, right and idle.
The assumption in each state is that, at a given time step, the classifier believes that the
features belong more strongly to one class (left) or the other, right (i.e. the output of the
classifier ranges from 0 to 1, but leans towards either 0 or 1). Thus, in a given intentional
state, there are two states in the Markov Chain, s1 and s2, and two transition probabilities
p12 and p21. The values of the classifier output in each state in the chain are drawn from
distributions D1 and D2, which can be any function that generates random variables whose
values could plausibly be generated by the classifier. Note that since a 2-class MI-BI does
not detect a third, idle state, any difference in the behaviour of the states must be defined in
the same way as the intentional states, either by changing in the distributions of the Markov
chain states D1 and D2 or the transition probabilities p12 and p21. Figure 4.5 illustrates the
Markov chain for one of the states.

D_1 D_2p_12
p_21

Figure 4.5: Markov chain representing the parameters for one intentional state (left, right, or
idle). At the current time step, a value is generated from the distribution Di from
the current Markov chain state si, and the probability of transitioning to the next
state at the next time step is given by pij .

In the current model, a delay is applied, which accounts for the pure time delay due to the
feature extraction and classification process, which was estimated to be 0.5 seconds (since
every classifier output took into account the previous 1 second, it seems reasonable that
a change in state would begin to be seen from around half this time). A further delay
occurs when switching from one mental state to another. This is difficult to measure, as it
is difficult both to pinpoint exactly when the user began to switch mental states, as well as
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4 Simulating the feel of Continuous Control

when exactly the peak intensity of the other mental state was reached.

The parameters of the model can be selected either by manual tuning, by using an opti-
mization algorithm, by calculating the parameters or a combination of the three methods.
Section 4.6.1 details this methods for choosing parameters of the model that were used in
the current analysis.

4.5.2 A bottom-up, data-driven approach using the IAAFT algorithm

One method of simulation is to generate surrogates of the signals. These are signals that
share some of the same statistical properties with the original signal but differ in the actual
time series. For our purposes, this enables us to generate signals that have similar properties
to the original signals but are not exactly the same. The hypothesis is that this will capture
the properties of the feel of the signal, as well as the selection accuracy.

The Iterative Amplitude Adjusted Fourier Transform method (Venema et al., 2006) was
used to generate surrogates of the classifier output for each trial. The algorithm produces
surrogates of a time series by preserving the values of the original signal (template) and
the magnitude of the Fourier spectrum, while shuffling the phase of the Fourier spectrum of
the real data. This has been used, for example, to simulate cloud distributions for weather
predictions (Venema et al., 2006). As the matlab code for the algorithm is laid out in the
paper, the following represents a qualitative step through of the algorithm:

1. create a surrogate of the same length of the template from white noise

2. continue until max iterations reached OR convergence criterion reached:

a. replace the FFT magnitude of the surrogate

with the FFT magnitude of the template

(preserve the phase of the surrogate)

b. replace the values of the surrogate

according to the values of the template

in order of rank

(this again changes the FFT power spectrum)

c. calculate the convergence criterion as a

change in the accuracy of the FFT magnitude of

the surrogate compared with the magnitude of

the template

3. return surrogate
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In this way, one ends up with a surrogate that is the same length as the original signal,
whose values are the same as that as the original signal but shuffled in such a way that the
overall frequency content is very close to the original signal. For trials where the surrogate
signal has not reached the selection threshold by the end of the last sample, a new surrogate
is generated (either from the same signal or a different one) and the simulation continues.

4.6 Evaluation

Validation of a simulator is required to provide confidence in the model such that it can be
used to answer unknown questions of interest. Since the simulation model will always be an
approximation to the real system, one perspective on validation is that the goal should be
to establish confidence in the applicability of the model for its intended objectives (Sargent,
2010). The level of confidence in a model increases as the number of tests are passed;
however, at a certain point the degree of this increase slows as the cost of the testing also
increases. Thus, in the ideal case the modeller should select a battery of tests that provide
the highest degree of confidence with the lowest overall cost. Once the user is satisfied that
the essential parts of the model have been validated, the simulation model can be used. In
the current case, the model’s outputs can be thought of as being in two domains requiring
separate analysis techniques; offline evaluation compares the real data with the simulator’s
output in terms of summary statistics and graphical plots, while online evaluation involves
users comparing the subjective feel of the feedback control in an online paradigm. In each
domain, levels of validation with increasing sophistication can be identified, from face value
judgments (comparison by looking at the output) to statistical tests.

4.6.1 Offline evaluation

Offline evaluation involves comparing the output of the simulator with real data, either
quantitatively using numerical and statistical methods, or visually using graphs and dia-
grams. Quantitative measures were used to compare the real data and data generated by
the different the different simulation methods. In particular, the accuracy, time-to-selection
and time series of [pre-]integrated classifier output were compared.

Models

Three methods of calibrating the parameters for the Markov chain model, and the IAAFT
method, were used to generate simulated data for binary trials for 9 participants. For each
participant, 30 trials (2 consecutive runs) were used and simulated data was generated for
both left and right trials separately. As previously described, the signal for each trial was
assumed to be static and the samples from 1 second after the cue indicating the target
were used to generate classifier outputs at 16Hz according to the BCI system described in
Chapter 3.2. The linear integration method was selected by the author at the time of data
collection. Following this, at time t = 0, the target was ‘shown’ to the simulator, setting
the intentional state of the simulator to the target. The step integrator was used, which
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4 Simulating the feel of Continuous Control

set a minimum time-to-selection at 1 second from the time the feedback started. Thus, at
t = 0 the integrated output was reset to 0.5, and at each sample from t = 1s (sample 16),
the integrated classifier output was incremented by 0.03125 if the classifier output was ≥
0.6, and decremented by the same step size if the classifier output was ≤ 0.4. The end of a
trial was reached when the integrated output reached either 0.0 (left) or 1.0 (right). As the
means for the accuracies were very close at 100 runs (30 trials each), this number of runs
was used to generate data for each simulation model.

The first method of selecting the parameters for the Markov chain model (denoted Markov
Pmf ) drew classifier output values from the probability mass function (PMF) of the real
data for the states in the model. The probability of switching between states was given by
the conditional probability

P (St+1 = l|I, St = r) =
NISt+1=l,St=r

NISt=r

and correspondingly for P (St+1 = r|I, St = l) where I is the intended class, l and r are the
left and right states of the Markov model, St is classifier’s ‘perceived’ state of the user at
time step t and St+1 is the perceived state at time step t+ 1. Classifier output values ≤ 0.5
are taken as state l, while values ≥ 0.5 are taken as state r. NSt+1=l,St=r is the number of
trials where the next trial is in state l, and NSt=r is the total number of trials in state r. The
second method (Markov Prob) is almost the same, apart from using a Beta distribution to
model the values for each state of the Markov model. This has the advantage that the values
of the model are captured with a small number of parameters. Again, the assumption is that
the distribution of the output at sample t+ 1 is independent of the output at t. Although
this is not true in reality, this simplifying assumption was made as it seemed a reasonable
assumption for a first-pass simulation.

The first two Markov chain models and the IAAFT do not take into account that there may
be a variable delay in the time taken to switch between mental states. Thus for comparison,
a third model (Markov Delay) was used where a delay modelled as a Gamma distribution
was applied at each intentional state change. The parameters for the switching probabil-
ities, P (St+1 = l|I, St) and the delay distribution were optimised using the Differential
Evolution algorithm (Storn and Price, 1997; Das, 2011), a global optimisation algorithm.
The cost function used to compare the model output during optimisation was the sum of
the difference in accuracy between the real and simulated data, the KL-divergence of the
acceleration histograms of the integrated classifier outputs, and the KL-divergence of the
time-to-selection histograms.

Results

Selection accuracy. The selection accuracy is the percentage of trials where the integrated
classifier output reaches the correct target threshold. As can be seen in Figure 4.6 which
compares the selection accuracies for real and simulated data for each left and right target
for each participant – data points – the trend of the real data is followed rather closely
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by the simulated data. Box plots summarising the difference between the mean selection
accuracy over the simulated runs and the actual accuracy, for each model, are shown in
Figure 4.7. Table 4.1 shows the mean error (ME), mean absolute error (MAE), error range
and the percentage of participant scores that fall within the 95% prediction interval (PI,
i.e. the within the 2.5th and 97.5th percentile range of the data). The real accuracy falls
within the prediction interval for all of the data points, while the MAE is remarkably close
to the actual data at around 2-3 percent deviation from the mean for each of the models,
with the highest error being 11% with the Markov Delay model.
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Figure 4.6: Selection accuracy of actual and simulated data (mean over 100 runs) for different
participants using 1) the Markov chain method using the probability mass function
(PMF) of the real classifier outputs (Markov PMF ), 2) the Markov chain method
using the Beta distribution of the real classifier outputs (Markov Prob), 3) the
Markov chain method optimising the probability and delay in switching states
(Markov Delay), and 4) the IAAFT method (IAAFT ). Error bars are the 95% PI
over the runs.

Time to selection. Figure 4.8 shows examples of time-to-selection histograms for the real
data as compared with simulated, using bin widths of 0.5s. Overall, again the simulated
timings match well with the real data as for the most part, the real data is contained in the
percentile intervals of the model. Interestingly, for many data points there appears to be two
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Figure 4.7: Box plots of the difference between the mean simulated accuracy (over 100 runs)
and the actual accuracy for the 4 simulation models. Each box plot represents 18
data points (9 participants × 2 MI classes.)

Table 4.1: Comparison of accuracies for simulated and real data for 4 simulation methods,
showing the mean percent error (ME), mean absolute error (MAE), minimum and
maximum deviation from the mean (Error range), and the percentage of scores
contained in the prediction interval (PI).

Simulation Method ME MAE Range Scores contained in PI
Markov PMF -1.12 2.23 (-5.7, 5.9) 100.00 (18/18)
Markov Prob -0.94 2.36 (-5.9, 7.7) 100.00 (18/18)
Markov Delay -0.46 3.26 (-6.4, 11.0) 100.00 (18/18)

IAAFT 1.43 2.02 (-2.9, 6.7) 100.00 (18/18)
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or three peaks in the time histograms of the real data, indicating a multimodal distribution.
This could be further investigated by analysing a larger number of trials. Interestingly,
some of these peaks are somewhat captured by the trends in the upper percentiles of the
histograms, especially in the IAAFT model, but never completely in the averaged simulation
runs.

Table 4.2 shows the ME, MAE, mean error range, median error (MedE), median absolute
error (MedAE) and the median error range, while Figure 4.9 and Figure 4.10 show the
comparison of mean, median and spread for each data point. Figure 4.9 shows the average
range (top) and 95th percentile range (bottom) over the simulation runs (i.e. average for 30
trials), while Figure 4.10 shows the range and percentiles taking all the simulation trials as
a single set. It can be seen that even though the overall maximum time to selection of the
simulated trial is longer than the real data, the percentiles fall short of the real data. Thus,
on average, the Markov models underestimate the means and medians, reflecting that the
average range is shorter than the real data. That the medians are closer to the real data
than the means for the Markov models (e.g. MedAE = 0.31s, MAE = 0.52s for the Markov
Prob model) is accounted for by the fact that the peaks in the distribution are not captured
well in the simulated data. While the IAAFT model does a better job at matching the
means and medians, it can be seen that in most cases (e.g. p004 left, Figure 4.8, top right)
the closeness to the mean is due to a longer tail in the time-to-selection histograms than in
the real data. Finally, the optimization model Markov Delay sometimes improves the match
in the time-to-selection as compared with the other Markov models, but inconsistently, thus
the overall effect is that the MAE and MedAE are similar to the other Markov models, but
the variance is less skewed towards underestimation.

Classifier output time series. To compare the trajectories of the pre-integrated and
integrated classifier outputs, trials of similar length as the first and second peaks of the real
trials for 2 participants (right target) are shown in Figure 4.11. On face value, it appears
that the Markov Pmf and Markov Prob models match the integrated classifier output fairly
well in terms of the number of turning points or oscillations, while the output from the

Table 4.2: Comparison of timings for simulated and real data for 4 simulation models, showing
the mean error (ME), mean absolute error (MAE), minimum and maximum devia-
tion of simulated means from the real mean (Error range), and similarly the median
error (MedE), median absolute error (MedAE), minimum and maximum deviation
of the simulated medians from the real median.

Simulation Method ME MAE ME range MedE MedAE MedE range
Markov PMF -0.52 0.52 (-1.09, -0.20) -0.31 0.32 (-0.73, 0.12)
Markov Prob -0.52 0.52 (-1.06, -0.20) -0.31 0.31 (-0.73, -0.03)
Markov Delay -0.46 0.51 (-1.11, 0.46) -0.24 0.31 (-0.73, 0.61)

IAAFT -0.07 0.22 (-0.64, 0.41) 0.11 0.22 (-0.21, 0.73)
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Figure 4.8: Histograms of time-to-selection for real (purple) and simulated (grey, 95% per-
centiles averaged over histograms of 100 runs of 30 trials each) data over different
simulation models, for one representative participant. The histograms have bin
widths of 0.5s. The histograms show that the main peak is the same in both real
and simulated data, tailing off as expected for task times. Subsequent peaks in the
real data are sometimes partially captured by the average simulated data, most
often for the IAAFT model.
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Figure 4.9: Comparison of timings for real (purple fill, black dots) and simulated means and
range (top) and medians and percentiles (bottom). The real data for each data
point consists of 30 trials (2 runs of 15 trials each). The simulated ranges and
percentiles are the average over 100 runs of 30 trials per run.
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Figure 4.10: Comparison of timings for real (purple fill, black dots) and simulated means and
range (top) and medians and percentiles (bottom). The simulated ranges and
percentiles are the values from the total of 100 × 30 = 3000 trials.
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IAAFT model produces integrated classifier outputs that are noisier than the real data and
Markov models. The number of turning points and the time between turning points could
be used to quantify the level of noise for the step integrator, while the FFT could be used
to characterise the noise for an exponential smoothing integrator.

Discussion

From the offline comparison of model data with real, it has been shown that simulated
offline data based on the classifier output can produce signals that match the real data to
a large extent in terms of selection accuracy, time-to-selection and classifier output time
series. The different models are similar with slight differences in that subjectively, the time
series of the step integrator look more like the real data, while the IAAFT model is better
able to match the time-to-selection (and slightly better match the selection accuracy). The
optimization algorithm is sometimes able to improve the fit of the Markov models to the
data, but the current implementation is inconsistent. Thus, it may be that the Markov
models can be tuned to the subjective control in an online experiment, while the IAAFT
model as it currently stands can be used in offline analysis of data. In terms of offline
analysis, it would be useful to find out if the simulation models can be used to predict
the performance of a given user in a novel paradigm, and an example of this is shown in
Chapter 5.

Although the paradigm here used stepwise integrated classifier outputs, similar analysis can
be used for other integration methods. The apparent multimodality of the time-to-selection
indicates that there may be a low frequency component in the trajectory of the classifier
output, and this is reflected in that the models were somewhat able capture some of the
secondary peaks. Recently, Saeedi et al. (2013) found that the ‘fast’ and ‘slow’ trials could
be predicted by the uncertainty of the classifier before the trials began. This is useful
information which could be incorporated into future models, which would seek to better
model the selection time as well as the accuracy.

One caveat is that as the models were trained and tested on the same data, it is possible
that there is some level of over fitting. (The decision to use all the data was due to the small
number of trials, 30 for each mental class per user.) A better approach might be to train the
model on a subset of runs or trials from the same session and test the predictions against
the remaining runs. This would test the simulator’s ability to account for the fluctuation
of a user’s performance in a given session. Alternatively, if data is collected which captures
changes in user performance (for example, fatigue), this knowledge could be incorporated
into the model as a parameter. The assumptions of stationarity may also oversimplify
aspects of the output such as drift in the classifier output, and the dynamics of the control
of feedback are not captured by the models. Still, the results shows that simple models are
able to approximate the time and accuracy characteristics. As the actual trajectory of the
feedback is what the user sees, this can be evaluated in online experiments.
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Figure 4.11: Examples of pre-integrated and integrated classifier output for two representative
subjects (top and bottom). Subjectively, the Markov models match the real data
better as they are less noisy than the IAAFT model.
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4.6.2 Online evaluation

As the goal of the simulator is to simulate the online feel of control of the system, it must be
validated by simulating the output in real time. Different levels of tests can be used to judge
the quality of the simulators, with a trade-off between the cost of the test and the degree
of validation afforded. Qualitative feedback and quantitative tests provide complementary
information which can be used to improve the model.

Qualitative feedback can reveal aspects of the simulator that are important, for validation of
the simulator, or missing, which can be used to improve it. Several variations of evaluations
can be carried out in order to achieve this. In the simplest instance, BCI experts and users
can simply be asked to evaluate the face validity of the simulator. This is a qualitative test
for how much something looks or feels like something else (Banks et al., 2009). Participants
would use the simulator, providing opinions on the similarities and differences between
the simulator and real BCI. As a first pass, a ‘generic’ simulator that broadly captures the
control characteristics of any user can be used. The characteristics picked up by participants
would help to validate that the parameters of the simulator match those that users think
are important in simulating the feel of control. It would also likely illuminate control
characteristics that are not currently captured (or even those that could not realistically be
captured) by the model.

Taking this a step further, BCI users can be asked to evaluate a simulation model whose
parameters have been optimised to match their own performance. Apart from being set by
the experimenter, participants could also attempt to manually tune these parameters to fit
their idea of how a BCI feels like for them. In both cases, the goal would be to find out if
the model’s parameters are robust enough to simulate a variety of user characteristics. An
added benefit of the the latter case is that this would test if the parameters are intuitive to
BCI users. To provide a measure of the reproducibility of model fitting several participants
could be asked to tune the parameters of the model to the same data, comparing the fit
using the quantitative evaluation methods described in the previous section. Similarly,
the same participant could tune the model parameters to the same data several times. The
variability of the chosen parameters could provide objective measures of how precise people’s
perceptions of the BCI control characteristics are.

Experiences of naive users (i.e. who have never used a BCI before) can also provide valuable
input which can be used to validate the simulator. For example, naive participants could
be asked to describe their experiences of using a simulator, and these could be compared
with BCI users’ or researchers’ descriptions of real BCI. This would highlight the control
characteristics that are captured (or not) by the simulator. Naive users could also use the
simulator prior to BCI training, then compare their experience with the simulator either
through recalling their experience of using the simulator, or reusing the simulator after
training. The approach would test how well the simulator captures the relevant aspects
of BCI control by analysing how users’ expectations of using the simulator matched up
to their experience of real BCI. Quantitative tests which capture the user’s experience,
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such as the NASA task load index (NASA-TLX) (Hart and Staveland, 1988), could also
be used to evaluate similarities and differences of using a simulator compared with real
BCI. A limitation of this method is that many participants would be required to obtain
enough information to observe any patterns in the data. As in all the evaluation methods,
an analysis of the limitations and benefits of the simulator would be a useful result of the
studies.

Evaluation using a Turing Test

The ‘ultimate’ quantitative test to validate a simulator is the Turing test Turing (1950). In
this test, the participant is presented with a series of trials where each trial is either simulated
or real. After the presentation of each trial, the participant decides if the trial was a real
BCI trial or a simulated one. Again, several variations of the test can be identified. Firstly,
the participant can simply watch playbacks of trials, deciding if each trial was a playback
of real or simulated data. The data used can either be the participant’s own, or another
user’s. In contrast, online trials can be carried out where the participant is actually in the
loop with a real BCI. The feedback for each trial is either real (the participant is fully in
control), or simulated. As before, at the end of each trial the participant is asked to assign a
label to the trial. The BCI can be trained on real movements, where the participant uses an
accelerometer and tries to determine if the feedback is real or simulated. The advantage of
this method is that the experimenter is able to determine that the person is actually doing
the task. However, it could be argued that this is not ‘real’ BCI in the first place as the
person is actually moving. Alternatively, the experiment could be carried out on imagined
movements as in a real BCI; in this case the experimenter trusts that the participant is
really trying to do the mental task, rather than cheating to try to determine if the feedback
is real or simulated.

To evaluate results from a Turing test, the idea is to find out if people can distinguish
between the simulated and real data. Statistical tests for analysing results from a Turing
test are explained in (Schruben, 1980). The author explains that the reason why classical
statistical tests should not be used is that such a test is designed to guard against easily
rejecting the null hypothesis that there is a difference in answers between the two (i.e.
making a Type I error). This makes it easier to accept the null hypothesis that there is
no difference (a Type II error). To validate a simulator, on the other hand, the goal is to
guard against making a Type II error; that is, falsely accepting that there is no difference
between the two when in fact there is a difference. An approach to evaluating the results
of the test is then proposed, which adopts a Bayesian approach. Yet, the proposed method
of analysis takes into account only the number of simulated trials that are judged as real or
simulated, without incorporating the number of real trials that were judged to be simulated.
An alternative approach is to adopt a Bayesian approach to model selection (Bishop, 2006).1

This calculates a probability indicating which of 2 competing hypotheses or models is more
likely given the available evidence. Using Bayes’ theorem, the posterior probability of a

1Thanks to Simon Rogers for help with the method and equations.
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model M given the data D is proportional to the likelihood × prior:

P (M |D) ∝ P (D|M)× P (M)

For two models with equal probability (prior) Mi and Mj , the probability of Mi is

p(Mi|D) =
p(D|Mi)

p(D|Mi) + p(D|Mj)

In the current case, if Nr is the number of real trials and Ns is the number of simulated
trials, the data D is the sum of nrr, the number of real trials correctly judged to be real, and
nsr, the number of simulated trials incorrectly judged to be real. The competing models
(hypotheses) can then be defined as:

• Model 1 (M1) - the same mental model was used to judge between the simulated and
real trials (i.e. there was no difference in the way a trial was judged regardless of being
simulated or real). As this implies a single model parameter, y, the evidence can be
computed as

p(D|M1) = p(nrr, nsr|Nr, Ns,M1)

=
∫
p(nrr, nsr, y|Nr, Ns,M1)dm

=
∫
p(nrr|Nr, y,M1)p(nsr|Ns, y,M1)p(y|M1)dy

• Model 2 (M2) - different mental models were used to judge between the simulated
and real trials. In this case, two parameters y1 and y2 are used and the evidence is
computed as

p(D|M2) = p(nrr, nsr|Nr, Ns,M2)

=
∫ ∫

p(nrr, nsr, y1, y2|Nr, Ns,M2)dy1, dy2

=
∫ ∫

p(nrr|Nr, y1)p(y1|M2)p(nsr|Ns, y2)p(y2|M2)dy1, dy2

Thus, the evidence is computed by integrating the likelihood of the data over the parameters
of the model. Closed-form solutions for the evidence can be found using a Beta-Binomial
model, where the Binomial distribution

L(n|N, y) =
(
N

n

)
yn(1− y)(N−n)

calculates the probability of the data given the model parameters, and the Beta distribution

π(y;α, β) =
1

B(α, β)
yα−1(1− y)β−1
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marginalises the parameters over a prior distribution which is uniform when α = β = 1.
The probability that different mental models were used to judge simulated and real trials is
then computed as

p(M2|D) =
p(D|M2)

p(D|M1) + p(D|M2)

In this approach, the simplest model that can explain the data is favoured over more complex
models, such that the probability of M1 is higher if nrr and nsr are close. On the other hand,
the model is also sensitive to differences between nrr and nsr, especially as the number of
trials increases, since M2 would be better able to account for the difference. Thus if there
are large differences, M2 is preferred over M1 and in this way there is no bias towards M1.
Looking at it another way, there is always some chance that M2 is correct even if nrr and
nsr are close, while if they are far apart M2 explains the data better; thus the probability
of M2 never reaches 0 but increases towards 1 faster if there is a difference.

Experiments

2 pilot experiments have been carried out with participants being shown playbacks of trials
and being asked to guess which were simulated and real. One experiment was carried out
with BCI researchers and the other with real participants. As this is a novel experiment for
BCI, it was necessary to compare a plausible (as judged by the author) simulator to one
that was thought to be a ‘bad’ simulator. In the case that there is no difference between the
‘good’ simulator and the real data (participants use the same model for both simulators),
this is a check that participants can at least separate out trials that are assumed to be
sufficiently different to real data, rather than either randomly guessing or biasing decisions
in a particular direction. The hypothesis is that there will be insufficient evidence of a
difference between the ‘good’ simulator and the real data, but that there will be a difference
between the ‘bad’ simulator and real data. The trials for the ‘bad’ simulator are taken to
be the baseline for which participants, if they are doing it correctly, should be able to tell
are simulated trials.

In both experiments, the parameters for the ‘bad’ simulator were set by manually tweaking
the parameters such that the integrated classifier output would produce a large number of
oscillations before reaching the target. The parameter calibration for the good simulator are
described in the respective experiment method sections. Trials from the bad, good and real
data were stored and presented to the participants in random order. After each trial that
was played back to the participant, they indicated using the left or right shift keys whether
they thought the trial was simulated or real. After the experiment, participants were asked
to describe the criteria they used to tell the difference between real and simulated trials.
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Experiment 1: Turing test with BCI researchers

Method. Participants were 10 BCI researchers from the same lab that developed the BCI
system, which also provided the BCI participant’s data that was used for the simulator.2

Participants viewed feedback trials from the BCI participant as if they were standing behind
the BCI participant and watching him carry out the calibration trials. The trials were either
generated from the BCI participant’s real data, data from the ‘good simulator’, or data from
the ‘bad simulator’. All participants were informed of who the BCI participant was whose
data was being played back, that this was a day where he had fairly good performance,
and were at least somewhat familiar with the person’s BCI performance and behaviour.
Selection accuracy for the left trials was 64%, 100% and 68% for real data, bad simulator
and good simulator respectively, and 94%, 95% and 89% for the right trials. Figure 4.12(a)
shows examples of integrated classifier output of real trials, and data produced by the two
simulators. The real data look comparable to the good simulator, while the bad simulator is
clearly different with oscillations around 0.5. Figure 4.12(b) compares the time-to-selection
of the trials. Although comparable, the real data appears to have a longer tail than the good
simulator. The bad simulator has a vastly different distribution of timings than the real
data, in most cases either taking a much longer time (∼70 seconds) or a much shorter time
(less than 1 second) to reach the threshold. 5 left and 5 right trials for each data type were
presented in randomised order, for a total of 5 trials × 2 targets × 3 simulators = 30 trials.
The integration method used was the exponential smoothing function as in during the data
collection, and the Markov delay model was used for the ‘good’ simulator. Parameters were
selected by running the optimization algorithm a number of times and selecting the set that
produced the most reasonable simulator both offline and online. Since the experiment was
done remotely, participants were asked to provide a typed description of their criteria used
to judge the trials, as well as any comments about the experiment.

Results and discussion. Figure 4.13 shows the scores and the probability that different
mental models were used to judge the trials (P (M2|D)). The mean and standard deviations
for the ‘bad’ simulator, ‘good’ simulator and real data were 3.4 (± 2.54), 6.4 (± 1.8) and
5.7 (± 1.45) respectively. Data from 7 out of the 10 participants follows a trend such that
the number of trials marked ‘real’ for the ‘bad’ simulator was ≤4, while the number for
the ‘good’ simulator and the real data were comparable at ≥5. In all of the cases where
there was a high probability (≥0.8) of model 2, this was due to a difference either between
the bad simulator and the real data (p6, p8 and p16), or the bad simulator and the good
simulator (p2, p6, p14, p16, p19). It is interesting to note that on average, fewer trials for
the real data were marked as ‘real’ than for the ‘good’ simulator. Subjective feedback from
participants as to how they judged the trials can help to illuminate this finding.

Participants’ criteria for scoring trials as real included consistent movement towards the
correct target (p2, p4, p16), ‘smooth movements’ in general (p16), smooth movements
towards the end of the trial (p8), and oscillations in the wrong direction ‘some of the time

2While the experimental design and protocol was done by the author, the experiment was carried out by

Serafiem Perdikis from EPFL
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but not too often’ (p2, p4). p14 indicated that a trial was marked real when there were
‘strange oscillatory behaviors, followed by smooth increase until the threshold’. 7 out of
10 participants mentioned the nature of the oscillations as criteria for judging a trial to be
real or simulated. The main criteria used to judge if a trial was simulated appears to be
large, inconsistent oscillations, or if the bar moved ‘too much’ or too quickly. 4 participants
indicated marking a trial as simulated if it took too long to reach the threshold. One
participant (p4) indicated that trials that were ‘very smooth’ or or ‘very sluggish’ were
judged to be simulated. Big jumps in the trial, a feature associated with the ‘bad’ simulator,
were also marked as simulated (p8, p16).

Some of the criteria used to judge trials as being simulated may have led to incorrect
labelling of real trials. For example, p6 wrote, “Whenever there were oscillations, I clicked
simulator option”. This may partly explain the somewhat conservative marking of trials as
being real (6/10 for real trials). Generalisation of the features of BCI control may also have
led to this. p19 stated, ‘if it approaches quickly to the correct trial zone without slowing
down when approaching the zone, I feel also that trial as fake’. Although in some cases
this may be true, it is not clear that every BCI trial should slow down when reaching the
threshold. Underestimating the time taken to reach the threshold for some trials may also
have led to incorrect labelling of the real trials, consistent with p2’s statement, ‘whenever
the trial was taking too long to finish, I would also consider the trial fake, because my
experience says that a real subject will manage to reach the correct target within the first
5-8 seconds, otherwise he/she will get too tired (especially if he is biased) and give up’. Yet
there were some trials that lasted longer than 10 seconds, (Figure 4.12), indicating that in
some situations the participant would struggle for longer than the time expected by p2.

2 participants explicitly said that in general, they had difficulty telling the difference between
the simulated and real trials. p2 wrote ‘I was most of the times in doubt whether my
selection was correct)’. 3 participants (p2, p10, p14) indicated that knowing more about
the characteristics of the feedback for the subject would have helped to judge the trials.
This indicates that BCI researchers have a strong sense of there being differences in BCI
characteristics in terms of the behaviour of the feedback bar.
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Figure 4.12: (a)-(c) Random samples of the time series of the cursor feedback as seen by the
BCI experts in experiment 1, 10 trials for each of real data, ‘bad’ simulator and
‘good’ simulator. (d) Histogram of time-to-selection (TTS) for the trials.
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Figure 4.13: Turing test scores for BCI experts judging playbacks of trials for one BCI subject.
(a) Number of trials scored ‘real’ for the ‘bad’ simulator, ‘good’ simulator and
real data. (b) Boxplot of scores over all 10 participants.
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(a)

(b)

Figure 4.14: Results of Turing test experiment where BCI experts judged playbacks of trials
for one BCI participant. The probability of a participant using the same mental
model to evaluate all the trials is denoted M1, while the probability that two
different models were used to evaluate trials from two different sources is denoted
M2. (p(M1) = 1− p(M2).) (a) Probability of M2 for bad simulator vs real, good
simulator vs real and bad simulator vs good simulator. (b) Contour plot showing
the probability of M2 for different values of nrr (actual real, answered ‘real’) and
nsr (actual simulated, answered ‘real’). Blue indicates that the data favours M1,
while red indicates that M2 is very likely.

103



4 Simulating the feel of Continuous Control

Experiment 2: Turing test with healthy participants

Method. 4 people who had undergone MI training took part in the experiment. As they
were in the lab for another experiment, participants did the MI calibration trials first as a
standard warm-up or calibration to ensure that performance for the day was adequate for
the experiment. While they did the actual experiment, data from the calibration trials were
used to create a simulator. At the end of the experiment, participants were then asked to
do the simulator experiment. In order not to confuse participants, the trials for the left and
right targets were separated. The experiment thus consisted of 15 trials of each of the bad
simulator, good simulator and real data for the left target, in randomized order, followed
by 15 of each for the right target, giving a total of 15 trials × 3 simulators × 2 targets =
90 trials.

In this experiment, the step integrator was used as the evidence accumulation. For p005 and
p012, the model and parameter tuning method was the same as the previous experiment,
while for p026 and p027 the Markov Pmf model was used to calibrate the parameters. The
time series of the integrated classifier output that was seen by participants was recorded for
participants p026 and p027 (but not for p005 and p012). Upon viewing the recorded data,
it was found that a bug in the experiment program caused the data to sometimes take a
longer time to reach a threshold than the actual recorded time series. This was due to a
change in the calibration trials program prior to carrying out the simulation experiment for
these last two participants, which was not taken into account in the program for the simu-
lation experiment. This may have had a negative impact on the validity of the experiment;
nevertheless as their data and subjective feedback are still useful, the results are reported
here.

Results and discussion. Results for the data for participants is shown in Figure 4.15.
For 3 out of 4 of the participants, the probability that the trials for the bad simulator could
be distinguished from real trials was high (> 0.8) for both left and right trials, and for 6 out
of 8 data points the probability of model 2 was equally high. p005 rated most of the trials
as real. In terms of subjective experiences, p005 explained that he thought all of the trials
were plausible, as while he was doing the motor imagery tasks, he was concentrating on
the tasks and not really focussing on the movement of the cursor. p012 found it a struggle,
saying that in many cases he did not know whether his answer was correct. p026 found
that he thought that around a third of the trials were simulated, while p027 found the task
‘ok’ in terms of difficulty. Noisy behaviour, or ‘jitter’, was reported by p012 and p026 as
the main criterion for distinguishing between real and simulated trials, while p027 indicated
that as he could not remember any trials where there was more than one turning point, he
marked all the trials where this happened as simulated.

Since, as previously mentioned, there was a bug in the experiment program for p026 and
p027, a detailed case analysis for each participant is deserved. In each case, the effect of the
bug was that some of the trials did not reach the threshold at the recorded time, and were
thus longer than the recorded trials. Figures 4.16–4.19 show the time series of trials that
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participants actually saw and how they judged them (top) and the recorded trials for the
real data and good simulator (bottom). Figures 4.16 and 4.17 show that for p026, the trials
that were presented to the participant as real and those for the good simulator were longer
and noisier than the trials that were actually recorded. However, the participant marked a
fair number of these longer trials as real, indicating that to some extent, he was willing to
accept longer and noisier trials as being real.

For participant p027 (Figures 4.18 and 4.19), it can be seen that in the instances where the
trials were comparatively long and there was more than one turning point, the participant
marked these as simulated, as he reported. This occurred for both the good simulator
and the real data. A comparison of the difference in time series between trials seen by the
participant and the trials recorded confirms the presence of this bug in the experiment code,
and two interesting points can be made from the results. Firstly, the trials for ‘goodSim
wrong’ and ‘real correct’ (trials judged to be real) show similar characteristics in terms of
the time taken to reach the threshold, while the trials for ‘goodSim correct’ and ‘real wrong’
(trials judged to be simulated) also shared similar characteristics in that there was more
than one turning point in each of the trials. Trials for bad simulator vs good simulator or
real data were consistently distinguished from one another, while the probability of M2 for
good simulator vs real trials was consistently low. This shows that the participant had a
very specific mental model of his own perceived performance. That the time series of the
recorded data for both real and simulated data appear to have fairly similar characteristics
strengthens support for the validation of the simulator, showing that the simulator did not
generate trials that were markedly different from the real data. Secondly, it is interesting
that p027 indicated that he could not remember trials where there was more than one
turning point, as the real data shows 4 instances where this actually happened. While this
is a very small number of trials (4/60 or 6.7%), this indicates that he might have marked
these trials as simulated if he had actually seen them. Finally, although the participant
judged the trials by the number of turning points, it would appear that he did not take
into account the time taken for the turning points or remember the target for which they
occurred (there were no real trials that had a turning point for the right target, yet these
were what were presented in the simulation experiment and which he actually accepted as
being real).

The discrepancy in performance between p005 and the other participants in distinguishing
the bad simulator from the good simulator and real data is interesting as it supports the
need to have carried out the experiment with the bad simulator in the first place. (If all
the participants could not tell the difference between real and simulated data, one would
question whether people generally notice difference between trials at all.) It is unclear why
this participant did not share the same pattern of scores with the other participants. If
his performance had been poorer than the other participants’ (trials were noisier and took
longer), a plausible explanation would have been that as the trials for the bad simulator were
similar to the real data, they were easily confused with the trials for the good simulator.
However, this did not seem to be the case as the scores for all the participants were high.

105



4 Simulating the feel of Continuous Control

It is possible that p005 was simply tired that day or was judging the trials as he thought
were plausibly real BCI trials rather than being his own trials. Similarly he might have
been judging the trials according to his past performances as a whole rather than at the
time of the trials, or he may have forgotten what his performance was like in between doing
the calibration trials and the simulation experiment. It may also be that he simply did not
pay attention to the characteristics of the trials, or forgot what the trials were like, which
would be in line with what he reported.

General Discussion

The experiments showed that participants’ reported criteria for judging if a trial was sim-
ulated or real was fairly consistent across the BCI researcher and BCI participant groups,
with the main criterion being the degree of oscillations in the feedback bar. A few par-
ticipants also mentioned taking into account their expectation of accuracy of the feedback
bar moving towards the correct target. Across most participants in both experiments, a
similar pattern was followed such that the probability of M2, that different mental models
were used to judge between simulated and real trials, was high (> 0.8) for many of the data
points in judging between the bad simulator and either real data or the good simulator,
while the probability of M2 for distinguishing between the good simulator and real data
was consistently < 0.6 for experiment 1 and < 0.5 for experiment 2. The slightly higher
probabilities observed in experiment 1 can be accounted for by the smaller number of trials
used in experiment 1.

It is interesting that for most participants, some of the real trials were judged to be sim-
ulated. There are a few ways this could have occurred. Firstly, it could have been due to
random guessing, where the participant was unsure whether the trial was simulated or real.
Secondly, it could have been due to a bug in the system, as was with p026 and p027 in the
second experiment, where the trials seen by the participants were longer than the actual
trials recorded due to a sampling error. Thirdly, incorrect labelling could have been due
to an incorrect assumption about the real data such that some feature of the real trial led
to the incorrect conclusion that the trial was simulated. This clearly happened for some
of the BCI experts in experiment 1, which could be due to them not having witnessed the
performance of the BCI participant prior to the experiment. Where it happens for partic-
ipants viewing their own data versus simulated data, this would mean that the model of
the user’s own performance was somewhat different from reality. Underestimation of one’s
performance could lead to rejecting short trials or trials that correctly hit the target, while
overestimation could lead to rejecting longer trials or trials that reached the wrong target.
However, the amount and quality of data in this experiment is insufficient to draw conclu-
sions about how often this would happen, when, and if there are individuals who perform
better on such tests. Further experiments should be carried out to identify how much people
are actually aware of their own performance; the Turing test methodology presented here
provides a basis for carrying out such experiments.

Where simulated trials were correctly labelled as simulated, this could again happen by
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Figure 4.15: Turing test scores for participants judging playbacks of their own trials after an
experiment, for left and right trials. The probability of a participant using the
same mental model to evaluate all the trials is denoted M1, while the probability
that two different models were used to evaluate trials from two different sources
is denoted M2. (p(M1) = 1 − p(M2).) (a) Number of trials scored ‘real’ for the
‘bad’ simulator, ‘good’ simulator and real data. (b) Contour plot showing the
probability of M2 for different values of nrr (actual real, answered ‘real’) and
nsr (actual simulated, answered ‘real’). Blue indicates that the data favours M1,
while red indicates that M2 is very likely.(c) Probability of M2 for bad simulator
vs real, good simulator vs real and bad simulator vs good simulator.
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Figure 4.16: Feedback display (linear-integrated classifier output) of online evaluation exper-
iment for p026, left trials. The top graphs show the actual feedback trajectories
seen by the participant, while the bottom graphs show the actual recorded data
for real trials and simulated trials (‘good’ simulator trials).
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Figure 4.17: Feedback display (linear-integrated classifier output) of online evaluation experi-
ment for p026, right trials. The top graphs show the actual feedback trajectories
seen by the participant, while the bottom graphs show the actual recorded data
for real trials and simulated trials (‘good’ simulator trials).
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Figure 4.18: Feedback display (linear-integrated classifier output) of online evaluation exper-
iment for p027, left trials. The top graphs show the actual feedback trajectories
seen by the participant, while the bottom graphs show the actual recorded data
for real trials and simulated trials (‘good’ simulator trials).
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Figure 4.19: Feedback display (linear-integrated classifier output) of online evaluation experi-
ment for p027, right trials. The top graphs show the actual feedback trajectories
seen by the participant, while the bottom graphs show the actual recorded data
for real trials and simulated trials (‘good’ simulator trials).
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random guessing, and similarly, trials that correctly simulated the characteristics of real
data could have been misplayed due to the experiment bug. A ‘correctly’ simulated trial
could also have been misjudged by the participant due to an incorrect assumption or mental
model of the characteristics of the real trials. Even if the trial characteristics were the same
as a real trial, a participant having a good memory may have spotted that the simulated
trial was not actually one that they had seen before, thus marking the trial as simulated
not because it did not reflect the right characteristics, but simply because it was not a real
trial. This did not appear to be an issue in the experiment, as the recordings for p026
and p027 showed that even trials that were not exactly the same as real trials were marked
as real, indicating that participants do not remember the exact trajectory of the feedback.
Finally, the participant may have judged the trial to be simulated due to a correct judgment
that the trial had different characteristics to a real BCI trial. It is of course possible that
while the majority of trials produced by the real simulator are closely matched to the real
trials, several trials could display deviant characteristics from the real trials. This is a
reasonable expectation of the performance of the simulator, as a model is generally always
an approximation of the real system (Sargent, 2010). Conversely, a higher proportion of
simulated trials being labelled as real than the real trials could mean that the simulator did
not sufficiently capture all the characteristics of the real data.

Thus, the attempt to validate the simulator with the Turing test raised several interesting
questions with respect to how people perceive or remember performance in an MI-BCI.
Firstly, users’ main criterion for distinguishing between real and simulated trials was the
degree of noise in the feedback. This suggests that to some extent, people pay attention to
the trajectory of the feedback as well as the performance criteria such as selection accuracy
and time to reach the target. The interaction between these aspects may influence the feel
of, or perceived, control of the interaction. Further investigating the relationship between
these aspects would be useful for the design of BCI feedback, since it is widely accepted by
now that users’ perception of performance is a more important criterion for acceptability of
user interfaces than actual performance. For example, Harrison (2007) found that changing
the acceleration of a progress bar from left to right while keeping the time constant affected
user’s perceptions of how quickly the bar reached the end point. The perception of the
passage of time is linked to the sense of agency, or the feel of being in control of an outcome
(Ebert and Wegner, 2010); overestimation of elapsed time is linked to low levels of perceived
agency, while underestimation is linked to a high level of perceived agency. Lynn et al.
(2010) found that people’s perceived intent to control movements of a line via a simulated
BCI could be manipulated by the number of times the line actually moved. Thus far, there
have been no studies investigating how the feel of control or perception of performance is
affected by the speed or level of noise of the feedback. It is possible that manipulating
these aspects can improve the perception of control for BCI users, thus improving the user
experience. The simulator could be a useful tool to carry out these investigations.

Finally, the current experiment methodology (calibration trials) used to investigate the
feel of control of a BCI did not allow us to capture users’ perceived delay of mental task
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switching. To do this, a continuous experiment could be designed such that the user imagines
one class for a period of time, and switches to another class at a set time. One issue is that it
is difficult to pinpoint exactly when the user switched mental states, and when the feedback
actually moved in response to the user’s change in mental state. Another is that the signal
within a mental state is itself corrupted by noise. A workaround would be to ignore all the
trials that were wrong, i.e. where the user did not manage to reach the correct target. The
issue of interest is then how the user’s perception, that is the feel of delay, relates to the
actual delay.

4.7 Conclusions

A conceptual model of factors which influence the feel of control of a MI BCI, the first of
its kind, was developed and validated in conjunction with BCI researchers. Possible metrics
that can be used to quantify the time series of a BCI signal, with regard to simulating the
feel of control, were identified. The implemented approaches to simulating the signals were
described, and some methods of evaluation were discussed. Preliminary results indicate
that the current simulator models are able to produce characteristics that are similar to
the real datasets in terms of selection accuracy, time-to-selection and classifier output time
series, and are similarly confused by participants viewing playbacks of the simulated and
real feedback trials. Of the BCI researchers who tried to detect the difference between real
and simulated trials in an online Turing test, there was evidence to suggest that around half
could distinguish the trials generated by the bad simulator from either the good simulator
or the real data, but not between the good simulator and the real data on which it was
modelled. More experiments are required to validate the models for individual participants
and to ascertain the nature of how the signal features map to the feel of control (i.e. what
features lead to users’ belief that the presented feedback is real). However, the generic
simulator may be considered to be a good enough approximation to a real BCI for the
purpose of design and development.

The goals set out at the beginning of the chapter for building a simulator were to capture
the feel of control of a BCI for use in design and for communicating with stakeholders. The
current simulator models have been developed to capture at least the oscillatory behaviour,
speed and accuracy of MI-BCI trials. Further improvements to the model and experiments
can help to ascertain the extent to which these models reflect the real BCI, and to what
extent people perceive, and the simulator can capture, individual characteristics or classes
of characteristics representing groups of individuals. However, the current models represent
the first steps towards the goal. In terms of development and debugging, the described
simulator can be useful in providing classifier output values that can be directly used in a
BCI application. The usefulness of the simulator in developing a novel control paradigm or
an application is demonstrated in the online simulation user studies described in Chapter
6. In addition, it may be possible to use the simulator to generate offline predictions of task
performance in a novel paradigm. This is demonstrated in the next chapter.
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Paradigm

Summary. This chapter provides an example of using the simulator models developed in
Chapter 4 to predict task performance in a novel BCI paradigm using offline simulation.
Simulation predictions based on binary data and actual results were compared for 10 par-
ticipants in a paradigm named the Rotate-Extend (REx) paradigm. The main findings are
that simulation can be useful as an offline tool for predicting user performance. Using dif-
ferent models can help to strengthen the quality of the predictions as they capture different
aspects of user behaviour.

5.1 Introduction

The binary paradigm for a 2-class Motor-Imagery Brain-Computer Interface (MI-BCI) as
discussed in previous chapters is a natural design choice for interaction as it directly follows
the offline training task paradigm. Nevertheless, it is not evident that the mental classes
used for training in the offline task should be the same as that for an actual application.
There is also no inherent reason why the interaction should be discrete, as long as there
are no psychological or neurophysiological difficulties arising from continuous control or
imagination of the mental class. Several examples of control paradigms for 2-class MI-BCIs
which are alternatives to the discrete binary paradigm have been reported in the literature.
In Yue et al. (2012)’s study, 5 out of 6 participants were able to continuously balance a
simulated inverted pendulum for more than 35 seconds; Tonin et al. (2011) describes a
telepresence robot controlled by using a 2-class MI-BCI to turn it left or right by selecting
the corresponding targets, and keeping it moving straight ahead by keeping the cursor in
between targets; Scherer et al. (2008) similarly describes a user moving around in a virtual
apartment; the ubiquitous Brain Pong game (Kerepki et al., 2007) assumes continuous
control of the horizontal position of a paddle on the screen. McFarland et al. (2003) explored
participants’ ability to select a target out of 2, 3, 4 or 5 targets by controlling the vertical
position of the ball, while Friedrich et al. (2009) investigated the use of a scanning mode
where a relaxed mental state advanced a cursor through 4 sequential targets, and a MI
class was used to select the target. In these tasks, considering the dynamics of control is
important, as the tasks depend on the user’s ability to time the production of their mental
states to coincide with the correct movement of the relevant interface object on the screen.
The tasks mentioned above represent both continuous time control, where ‘continuous’ here
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refers to the user’s perception of continuous motion, and continuous state control where the
classifier output is not simply a set of discrete classes but a real number.

In most of the studies considered above, an offline training phase is followed by an on-
line training phase with discrete calibration trials. The desired control paradigm is then
tested, either by adaptive algorithms or with the researcher setting the parameters for the
participant. A useful tool would allow a designer, researcher or practitioner to gauge how
well a particular participant might perform for different paradigms, and to optimize the
parameters of the paradigm for the participant. McFarland and Wolpaw (2003) showed
that simulation of task performance using a simple model could predict the trends in per-
formance, such that changing the gain of cursor movement predicted which targets would
be more easily selected given different levels of the gain parameter (high, medium or low).
However, the gain parameter that would lead to optimal performance requires to be fine-
tuned for each individual. It is also possible that individual characteristics can mean that
the best control paradigm is different for different participants. If this knowledge can be as-
certained without having the participant experiment with many parameters and paradigms,
time and effort required to manually select the best options could be saved. In this chapter,
the Rotate-Extend (REx) paradigm, a generalisation of the Hex-o-spell (Blankertz et al.,
2006b; Williamson et al., 2009) paradigm is investigated with a view to finding out if sim-
ulations which utilise the knowledge of individual control characteristics can be used to
predict individual task performance. In particular, the aim is to find out if it is possible to
generalise from the binary selection task to a more complex paradigm. It is expected that
models of the binary calibration data can be used to make predictions of task performance
for individual users in the REx paradigm; specifically, that an individual user’s performance
for the REx paradigm will fall within a 95% prediction interval of simulated performance
in terms of selection accuracy and task time.

5.2 REx paradigm and parameters

The Rotate-Extend (REx) paradigm consists of a wheel divided into segments (Figure 5.1).
An arrow in the centre of the wheel controls the selection of target segments. One mental
class is used to control the rotation of the arrow, and the other class extends the arrow to
select the target segment. A feedback bar may be displayed, which displays the integrated
classifier output in a similar manner to the binary feedback. In contrast to the original Hex-
o-spell program, which had a fixed number of segments, the REx paradigm has a variable
number of selections. Although the language model in the original Hex-o-spell allowed the
placement of the arrow such that overall the first few segments were most often selected, in
the REx paradigm the assumption is that each segment is selected with equal probability.
Thus, it is unclear what the optimal combination of speed and number of segments in the
wheel is that would enable the user to achieve the highest bit rate.

Table 5.1 provides a summary of the REx parameters and the initial values set. The
MI classes used for rotation and extension of the arrow were assigned according to user
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Figure 5.1: Screen shots of the Rotate-Extend (REx) paradigm. Left: arrow in rotation mode
with the target segment highlighted in blue with the integration feedback bar on
display. Right: arrow in extension mode, selecting the correct target segment
which turns green.

preference; in cases where there was a bias in the classifier (where the participant found
it easier to reach the threshold for the class), this class was used for rotation. The arrow
was set to turn 2.5 seconds per segment, while the extension was set at 0.3 seconds. The
integration of the arrow used the exponential smoothing function described in Chapter 4,
given by

Yt = αYt−1 + (1− α)Xt

where Yt is the integrated classifier output at time t, Xt is the raw classifier output at time
t, and α is the rate of integration between 0 and 1.0. High values of alpha are smoother
but require a longer time to attain a threshold, while low values are more sensitive to the
classifier outputs at each time step. At the start of a trial, the integration value was reset
to 0.5. The target was displayed to the user, and after 1 second the arrow began to behave
according to the value of the classifier output. If the integrated classifier value was under
the rotate threshold, the arrow rotated, while if it reached the extend threshold, the arrow
extended. If the value was in between the thresholds, the arrow would stop moving. The
initial values were 0.4 for the rotate threshold, and 0.8 for the extend threshold. Table 5.1
summarises the parameters that could be tuned for the REx paradigm.

5.3 Method

5.3.1 Participants

10 healthy participants (mean age 30.8 ±11.45 SD) who had previously been trained to
perform MI with the calibration tasks participated in the experiment. All participants had
previously had at least one session during which they were exposed to the use of the REx
paradigm. For the session used to generate simulation data, 30 calibration trials were first
carried out, followed by performing test runs of the REx trials, where the parameters for
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Table 5.1: Initial parameters set for the Rotate-Extend (REx) paradigm.

Parameter Description Initial value
MI classes Mental class for rotate or extend N/A
Integration rate α parameter in the exponential smoothing

function
0.95

Rotation threshold Value of classifier output under which the ar-
row rotates

0.4

Rotation time Minimum time taken to rotate through each
segment

2.5 sec

Extension threshold Value of classifier output above which the ar-
row extends

0.8

Extension time Minimum time taken to extend the arrow to
reach the inner circle

0.3 sec

the rotation and extension speed and thresholds were configured individually to the user.
Participants carried out 48 REx calibration trials for 6 segments, with breaks in between
every 12 trials.

5.3.2 Models and parameters.

The simulator models from the previous chapter were used in offline simulations to predict
the task performance of individual users in the REx paradigm. The simulated classifier
outputs from the models can either be directly fed into the paradigm to simulate the system
in offline mode, or used to generate statistics that are used to drive an abstracted model of
the paradigm (e.g. a finite state machine abstraction). Both techniques were used in the
simulation experiments. Some statistics can also be abstracted from the real data. Several
model parameters relating to the user’s control of the paradigm can be identified:

• Time taken to reach rotation threshold from idle state. This determines how
easily the participant can put the arrow into rotation mode when the trial begins.
If the first segment is not the target, the participant is likely to make an incorrect
selection if they cannot achieve this in time. For the direct simulation method, this
does not need to be estimated. For an abstracted model, an appropriate distribution
can be generated from the continuous simulator or from real data.

• Time taken to reach extension threshold from idle state. If the target segment
is the first in the wheel, this determines how easily the participant can select the first
target. Again, this can be generated from either the continuous simulator or from real
data.

• Time taken to reach extension threshold from rotate state. This partly
determines whether the user can select the intended segment with the rotation rate
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of the arrow within the time given for the segment. The delay occurs because of the
time needed to switch mental states and the time needed for integrating the classifier
output. Again, this does not need to be estimated for the direct simulation method.
One could also model the accuracy of switching; however, the delay time can also
incorporate this inherently if one assumes that eventually a person would be able to
make the switch from rotation to extension given an infinite length of time. In this
case an abstracted model of the time distributions can be used; a sample drawn from
this distribution that is longer than the rotation time allocated per segment would be
counted as a miss.

• Point of time at which the user consciously switches mental states. As there
is some delay in the time required to switch between the rotation mental state to the
extension mental state, the point in time which the user switches again affects whether
the intended segment can be selected. The user may have to compensate for the delay
by intentionally switching before the arrow has reached the target segment. This must
be estimated or obtained from the user as there is no way to pinpoint exactly when
the person started to switch mental states.

• Ability to switch back to rotate state. The correct target may be missed if the
time taken for the extension exceeds the rotation rate. This may be due either to
the user being unable to produce the correct mental state for extending the arrow;
alternatively, it may just take them a longer time to switch than the rotation rate
allows for a particular target segment. In the latter case, if the user does not switch
back to the mental state required to rotate the arrow again, the arrow may extend
and hit the segment after the target. This can either be modelled with a probability
indicating how likely the switch is to take place, or a distribution of times when the
user will switch states. The values must be estimated as there is no way to obtain this
information prior to the experiment. This is because in the binary calibration trials,
there is no need for the user to switch mental states.

• Number of false extensions. The expected time to reach a false extension in the
rotate class determines how often there will be false selection while the user is rotating
the arrow round the wheel. This can be extracted from the data either through direct
simulation or by abstracting from the continuous simulator.

The times taken to reach an extension or rotation threshold can be directly obtained from
data collected using the binary calibration trials. One caveat is that the data from the
calibration trials may not be long enough to obtain enough information about the longer,
continuous imagination of a particular mental state, which is in particular needed for the
mental state used to rotate the the arrow. The point of time that the user consciously
decides to switch cannot be estimated from the calibration trials, as it depends on how the
user perceives when they need to switch, or their mental model of how best to achieve the
extension; and the ability to switch back to the rotate state if the correct target segment is
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missed cannot be extracted from the binary calibration task. Where used as an input to the
model, the expected time to make a false extension is thus extracted from the continuous
simulators.

As this was a first attempt to determine the efficacy of using data from individual partici-
pants in a binary calibration task to predict their performance in a novel selection mecha-
nism, several models were developed and used to generate simulation data for comparison.
The intention was to provide recommendations for further research in developing simulation
models. The Markov Prob and the IAAFT models described in Chapter 4 (Sections 4.5,
4.6.1) were used as direct input into the offline simulation of the paradigm (‘continuous’
models). Since this method may be time-consuming and it was not clear that this would
generate the best results, models which abstracted user statistics were also explored, which
are simpler and thus allow for a faster simulation run-time. (On the other hand, it may
take some overhead to generate the statistics from the simulator models.) The abstracted
parameters were fed into a Finite State Machine (Figure 5.2, ‘abstracted’ models). Finally,
ensemble modelling was also used in order to find out if combining the results of different
models would improve the predictions over individual models.

Three methods were used to generate simulated data for comparison with real data. The
first method (‘Continuous simulator ’) used the classifier output simulators from Chapter 4
as direct input into the REx paradigm. The second method (‘Abstracted simulator ’) used
abstracted data from the simulators, with time distributions for rotation to extension times,
false extension times and time to extend if a segment was missed. The third method (‘Ab-
stracted real ’ and ‘Abstracted min simulator ’) simply used the distribution of rotation to
extension times, ignoring any false extensions that might occur. If the sample drawn for
a time-to-extend was longer than the rotation time, the model switched back to the ‘rota-
tion mental state’ with a fixed probability of 0.7. The ‘Abstracted real ’ model abstracted
summary statistics from the real binary calibration data, while the ‘Abstracted min simu-
lator ’ models used summary statistics abstracted from the simulators. Since the summary
statistics used were time distributions, each parameter was modelled using a Gamma dis-
tribution, where the parameters were estimated using the Metropolis-Hastings algorithm.
The final parameters α and β were the mean parameters sampled from the 160th to the
200th sample, with a step size of 5 samples, for three runs of the algorithm (the mean of 120
samples in total). Where the distributions were generated from the continuous simulators,
500 samples for each parameter were first generated and used to estimate the parameters
for the Gamma distribution. As 2 simulator models were used, a total of 7 models were
compared. For each model, 800 trials were simulated for each segment at switching times
of 0, 0.5, 1 and 1.5 seconds before reaching the target segment, giving a total of 100 runs of
8 trials per segment. This was compared to 2 runs of 24 trials (giving a total of 48 trials, 8
trials per segment) for the real data.
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Figure 5.2: Finite state machine used for simulating the REx selection mechanism using the
abstracted models. The states {i1,...i6} represent the wheel segment that the arrow
is currently pointing at. At the start of a trial, the arrow is positioned at i1. For a
given state is, continuing to rotate the arrow for the duration of the rotation rate
triggers a ‘next’ transition, which leads to the next state in the FSM is+1, while
an extension triggers a ‘select’ transition which terminates the trial and returns
the selected state, segments.
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5.4 Results

5.4.1 Comparison of overall accuracy.

Table 5.2 is a summary of the comparison of the mean average error (MAE), error range and
the number of participants for whom the actual selection accuracy was contained within the
95% percentile prediction interval (PI) of the simulated data. The predictions from the in-
dividual models taken on their own are shown in Figure 5.3. The individual models with the
best predictions are the abstracted min Markov and the abstracted real: both models have
the lowest MAE of 13% and 11% respectively, and the prediction intervals are wide enough
to capture the overall selection accuracy for 8 out of the 10 participants. The performance
of the other models in terms of comparison with the actual data are comparable. Arguably,
the worst individual models are the continuous IAAFT and the abstracted IAAFT.The con-
tinuous IAAFT has the highest MAE of 22% and consistently predicts a selection accuracy
lower than the true accuracy, with the exception of one participant (p008). The abstracted
IAAFT model was able to predict the scores for 3 participants with a MAE of 18%.

An ensemble model (averaging the scores for several models together) improves both the
MAE and the number of participants’ scores that are predicted. Figure 5.4 shows that
overall, combinations of the IAAFT and the Markov models are comparable, with the
Markov models generally making more optimistic predictions than the IAAFT models. This
is generally due to the conservative estimates of the continuous IAAFT model. Figure 5.5
compares the actual data with three combinations of models: combining all 5 abstracted
models, all the simulator models and finally all the models. Overall, the two best models
are the one which amalgamates scores from all the simulator models, and one that uses
all 7 models. Both results are very similar, with all 10 participants’ selection accuracy
contained within the PI and an average MAE of 10%. The abstracted models consistently
overestimate the selection accuracy of participants with the exception of pAR; however
again with the exception of p008 all the participants’ scores are well bounded within the
models’ predictions.

Since the simulation runs for the continuous models took longer than for the abstracted
models, trials which took longer than 240 seconds were terminated and considered to be
wrong. No such restriction was placed on the trials for the abstracted models. The discrep-
ancy between the overall accuracy in the continuous and abstracted simulator models can be
explained for 3 participants: in the continuous IAAFT and the abstracted IAAFT models
for p004 (7.0% of trials scored wrong due to timeout), and between the continuous Markov
and the abstracted Markov models for pDT (11.9%) and p006 (36.3%). The discrepancy
between the continuous and abstracted models for other participants seems, for the most
part, to be due to a larger proportion of trials selecting the segment before the target. This
occurs because for the abstracted models, the implementation of the simulation algorithm
simply selected the target segment if the time-to-extension was less than the switching time,
rather than selecting the previous segment.
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A couple of trends can be found with regard to individual differences in the prediction of
overall selection accuracy. The predictions for participants p008 and p012 are consistently
overestimated, while that for pAR is almost consistently underestimated. Particularly for
p008 and p012, this suggests that an additional model may be required to predict the scores
for these participants. If their results are removed, the MAE is reduced to within 7% (range
-8–10%) for all the abstracted models, 5% (-17–4%) for all the simulator models and 4%
(-16–6%) for the combination of all models. Most of the combinations of models also predict
the selection accuracy well with a MAE within 9%; however here the accumulated Markov
models perform slightly better (MAE 7%, range -10–16%) than the accumulated IAAFT
models (MAE 9%, range -24–5%).

5.4.2 Comparison of accuracy for each target.

To provide a more detailed analysis of how the overall selection accuracy is achieved by
the actual participant and simulated models, the accuracy for each target was compared.
For each target segment, the KL-divergence between the actual and average simulated dis-
tributions of segments selected was computed. Table 5.3 compares the distributions for 4
representative participants. Several behaviours can be observed if a ‘good’ score is taken to
be a KL-divergence for ≤0.5 for at least three of the six segments. Firstly, a single model
might account very well for the observed selections for all targets (pAR, with the abstracted
min IAAFT model). Secondly, none of the models may predict the user’s behaviour very
well (p012, p008). Finally, different models may account best for different targets. This is
the typical behaviour observed in the majority (7 out of 10) of the participants. The best
models may be spread across all models including the continuous models (p005, p009), or
across the abstracted models (p001, pDT, p004, pAC, p006).

Thus the model that best matches selection accuracy and accounts for the underlying reason
behind the performance for each target may be different. For example, for p005 the ab-
stracted min Markov model matches the actual data with a KL-divergence of 0.02 for target
segment 3 (a very close match), and 0.51 with the continuous Markov model. However, for
target segment 4, the KL-divergence for the Abstracted Min Markov model is 7.32 while
the continuous Markov model makes the best prediction at a value of 0.22. Similarly, for
participant pDT (Figure 5.6), the abstracted Markov model best predicts the performance
for target 2, the abstracted min Markov for targets 3 and 6, whereas target 4 is best ac-
counted for by the abstracted IAAFT model (KL-divergence=0.17) while the other models
do rather badly for that particular target (KL-divergence≥0.73). It can be seen that the
abstracted IAAFT model better captures false selections due to random extension of the
arrow. This leads to the observation of a decreasing trend in accuracy as the target angle
increases. The results provide preliminary evidence to suggest that for these participants,
some cognitive factors influence a participant’s behaviour in different targets.

As previously mentioned, the selection accuracy of p008 and p012 is consistently overesti-
mated by the models by a large error margin. Although the overall selection accuracy is
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Table 5.2: Comparison of mean absolute error (MAE), predicted range, and number of ac-
tual accuracies contained within the prediction interval (PI), for different models
and combinations of models. Each individual model uses 100 runs of 8 trials per
target segment, where the simulated participant switches mental state 0, 0.5 and
1.0 seconds before reaching the target segment (total of 300 runs). The real data
consists of 48 trials (8 trials per target segment). The values are averaged over 10
participants.

Model(s) MAE Error Range Num participants
contained in PI
(out of 10)

continuous IAAFT 0.22 (-0.50, 0.13) 6
abstracted IAAFT 0.18 (-0.24, 0.36) 3
abstracted min IAAFT 0.17 (0.00, 0.44) 4
continuous Markov 0.18 (-0.27, 0.43) 6
abstracted Markov 0.17 (-0.05, 0.43) 4
abstracted min Markov 0.13 (-0.04, 0.36) 8
abstracted real 0.11 (-0.09, 0.45) 8
continuous, abstracted IAAFT 0.17 (-0.37, 0.25) 6
continuous, abstracted min IAAFT 0.11 (-0.25, 0.29) 10
abstracted, abstracted min IAAFT 0.13 (-0.12, 0.40) 8
all IAAFT 0.13 (-0.24, 0.31) 10
continuous, abstracted Markov 0.15 (-0.16, 0.43) 9
continuous, abstracted min Markov 0.13 (-0.14, 0.39) 9
abstracted, abstracted min Markov 0.14 (-0.03, 0.39) 7
all Markov 0.13 (-0.10, 0.41) 8
all abstracted 0.13 (-0.08, 0.41) 9
all simulator 0.10 (-0.17, 0.36) 10
all 0.10 (-0.16, 0.37) 10
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Figure 5.3: Comparison of the selection accuracy of the REx paradigm for actual and simu-
lated data for each individual model, for each participant. The error bars for the
simulated data show the 95% prediction (percentile) interval.
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Figure 5.4: Comparison of the selection accuracy of the REx paradigm for actual and simulated
data for the IAAFT and Markov models, for each participant. The error bars for
the simulated data show the 95% prediction interval.
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predicted by the continuous IAAFT model, analysis of the KL-divergence of the selected
segments for each target indicate that the model does not adequately account for the reason
behind the decrease in expected accuracy for these two participants. In fact, the results are
better modelled by replacing the rate of false extensions (which were estimated from the
rotate state) with an idle state control. Figure 5.7 shows that this model consistently does
better than the continuous IAAFT model. The average KL-divergence across all the targets
for p008 is 1.45 using the continuous IAAFT model, and 0.64 using the abstracted IAAFT
model for false extensions.

5.4.3 Comparison of time to selection.

This section considers the time taken for a participant to make a correct selection and how
the data from the simulation models compare with real data. Table 5.4 compares the task
timings compared with the real data across the different models. The geometric mean is
used as as the summary statistic of central tendency as it is a useful approximation to the
true median for small sample sizes (Sauro and Lewis, 2010). Comparison across models is
computed by taking the median of the average geometric mean error over the simulated
runs for each participant and each target. In terms of the median average geometric mean
error, the best individual models are the continuous IAAFT (median deviation of 2.33 sec-
onds), continuous Markov (2.98 seconds) and the abstracted real (3.91 seconds). Tabulating
the percentage of actual geometric means contained in the 95% prediction interval (PI) for
each target and participant for each model show that the best individual model predic-
tions are again the continuous IAAFT (67% of targets contained in the prediction interval),
continuous Markov (70%) and the abstracted real (70%) models. As indicated by a Box
plot (Figure 5.8) showing the distribution of errors across the models, the continuous mod-
els generally overestimate the actual data while the abstracted models are more likely to
underestimate the geometric mean on average.

A higher mean or median than the actual time is indicative of a longer tail than the actual
data, while a lower mean or median may be indicative of either a shorter tail than the
actual data, or an underestimation of the peaks in the selection time which represent when
the participant is able to select the segment (taking into account the time it takes to loop
around the wheel). There are few instances where the initial peak selection time is notably
greater than the real data. A typical example is shown for participant p001 for target 4
(Figure 5.10). It can be seen here that the estimation of the peak timings are well captured
by the continuous models, and that the abstracted models underestimate the loop time
slightly. This is likely due to their not modelling the time during which the integrated
classifier output is within the rotation and extension thresholds (i.e. when the arrow is
not moving). Finally, the Markov models are seen to have longer tails than the IAAFT
models. The benefits of such a long-tailed distribution are seen here where it has taken this
participant around 70 seconds to select the correct target: the predictions from the Markov
models contain this value while the other models do not.

126



5.4 Results

Table 5.3: KL-divergence scores, comparing the distribution of segments selected for each tar-
get segment (for actual and simulated data across individual models). The best
model for each target is asterisked. Data for 4 participants are shown, one for each
category of observed behaviours (see Section 5.4.2 for details).

Participant,
Target

continuous
IAAFT

abstracted
IAAFT

abstracted
min
IAAFT

continuous
Markov

abstracted
Markov

abstracted
min
Markov

abstracted
real

pAR T1 0.06 0.06 0.00* 0.01 0.02 0.01 0.02
pAR T2 0.87 0.11 0.05 0.58 0.04 0.02 0.01*
pAR T3 0.91 0.29 0.04* 0.38 0.08 0.11 0.18
pAR T4 1.03 0.42 0.05* 0.41 0.08 0.10 0.17
pAR T5 1.15 0.49 0.05* 0.40 0.09 0.11 0.17
pAR T6 0.93 0.48 0.05 0.23 0.08 0.01 0.01*
p012 T1 1.93 0.60* 1.93 1.93 1.93 1.93 1.96
p012 T2 0.82* 1.43 6.17 2.56 5.01 6.07 6.06
p012 T3 0.73 0.94 4.17 0.70* 4.30 4.08 4.14
p012 T4 0.77* 1.09 6.16 1.47 2.25 6.07 3.41
p012 T5 0.21* 0.46 4.44 0.63 4.34 4.55 4.51
p012 T6 0.61* 1.12 8.43 1.94 2.72 8.32 3.60
p005 T1 0.01 0.05 0.01 0.02 0.03 0.01* 0.02
p005 T2 0.02* 0.82 4.12 0.07 0.84 4.11 4.25
p005 T3 0.38 0.14 0.11 0.51 0.10 0.09* 0.31
p005 T4 0.75 0.05 0.02* 0.55 0.07 0.02 0.06
p005 T5 0.70 1.64 6.95 0.22* 1.57 7.32 7.12
p005 T6 0.13* 0.28 2.02 0.36 0.26 2.00 2.19
DT T1 0.51 0.33 0.02 0.14 0.02 0.03 0.01*
DT T2 1.02 0.51 0.15 0.22 0.04* 0.29 0.07
DT T3 0.86 0.34 0.10 1.55 0.38 0.07* 0.18
DT T4 0.52 0.17* 0.91 2.17 2.90 0.73 1.33
DT T5 1.00 0.46 0.08* 1.38 0.42 0.08 0.20
DT T6 0.64 0.37 0.41 1.79 1.08 0.18* 0.65
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Figure 5.6: Target accuracy (top) and detail of segments selected for each target segment
(bottom) for participant DT, for individual abstracted models. Different models
account best for the selection of different target segments.
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However, the tail of the distributions sometimes does not seem to match the real data.
For p006, for example, the longest time taken to make a correct selection was 33 seconds
for target 6, while the longest simulation prediction was over 700 seconds. In this case,
the combination of the high selection accuracy and the much longer tail of the time-to-
selection reflects that false selections are not predicted by the models. It would be useful
to truncate the timings above a value at which point a person is likely to give up or the
trial should stop to avoid fatiguing the user. This should be taken close to the longest
time taken for a participant to make a selection, which was 121.63 seconds for participant
p008. Comparisons across individual participants shows that the long tails in the model
distributions occur mostly in p006, pDT and to a lesser extent p004. As the individual
models are seen to have different characteristics, averaging the results of the models are likely
to provide better estimates. Figure 5.9 shows that across all models for each participant, the
actual geometric mean timings are generally within ±5 seconds of the simulated predictions.
Combining models also produces results that are closer to the true results such that the
prediction intervals contain most of the actual geometric means for each of the IAAFT
(97%) and Markov (90%) taken together, all of the actual geometric means for the models
combining abstracted only, simulator only and all models.

5.4.4 Effect of switching time on accuracy

Although the previous models averaged across the values used for switching between mental
states for convenience (0, 0.5 and 1.0 seconds before the target segment is reached), closer
inspection of the simulated data with respect to the switching time does in some instances
reflect the user’s behaviour better for different targets. Figure 5.11 shows for p009, the
IAAFT models separated by time at which the person switched mental states accounts
for the different in selection accuracy for targets 4 and 5. Here, the closest match to the
segments selected for target 4 is a switch time of 0 seconds: the KL-divergence for the
0-second model is 0.42, while that for the 1.0-second model is 0.71. Conversely, for target
5, the 0-second model has a KL-divergence of 0.46 while the 1.0-second model matches the
actual data very closely at 0.10. (A very similar result is found for the Markov model,
although the simulation results for this model do not show any differences between a switch
time of 0 and 0.5s.) This may indicate that for target 5, the participant had more difficulty
anticipating the correct time to begin extending the arrow.

5.5 Discussion

Comparisons between simulated and real data show that the individual models capture dif-
ferent possible participant behaviours. For most participants, the best individual model for
predicting accuracy and task timing is the abstracted real model, which simply models the
time taken to reach the extension threshold as estimated from the real data of binary cali-
bration trials, and sets a probability of successfully switching back to the rotation state (if
the correct target segment is missed) at 0.7. However, it does not generate some behaviours
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Table 5.4: Summary of simulated timings compared with actual data.

Model Median Geo-
metric mean
error

Median
Absolute
Geometric
mean error

Quartile range Percentage
contained in
PI

continuous
IAAFT

1.79 2.33 (-1.44, 29.25) 0.67

abstracted
IAAFT

-3.72 4.28 (-9.89, 2.33) 0.47

abstracted min
IAAFT

-3.80 4.17 (-9.08, 2.84) 0.38

continuous
Markov

2.17 2.98 (-1.71, 48.72) 0.70

abstracted
Markov

-2.49 4.11 (-6.53, 21.28) 0.65

abstracted min
Markov

-2.91 3.91 (-6.61, 13.40) 0.57

abstracted real -3.12 3.12 (-9.67, -0.91) 0.70
all IAAFT -2.38 4.89 (-7.26, 10.82) 0.97
all Markov -1.44 2.91 (-4.18, 27.12) 0.90
all abstracted -3.04 4.28 (-7.71, 7.79) 1.00
all simulator -1.82 3.70 (-5.59, 17.45) 1.00
all -1.92 3.33 (-6.11, 14.30) 1.00
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Figure 5.8: Average geometric mean errors of timing across models, for each target segment
and participant.

132



5.5 Discussion

p
0

0
1

D
T

p
0

0
4

p
0

0
5

p
0

0
8

p
0

0
9

p
A

C

p
0

1
2

p
0

0
6

p
A

R40

20

0

20

40

60

80

S
im

u
la

te
d
 -

 r
e
a
l 
T
im

e
 (

s)

Figure 5.9: Average geometric mean errors of timing across participants.

that are observed in the actual participants’ data, such as the rate of false extensions. The
model that provides the most conservative estimates of task accuracy is the continuous
IAAFT model, which has the tendency to underestimate task accuracy because it overes-
timates the rate of wrong selections due to extending the arrow too early. The continuous
models tend to predict the peak distribution of task timings more accurately than the ab-
stracted models, while sometimes having flatter distributions. This leads to the continuous
models tending to overestimate slightly, and the abstracted models tending to underestimate
slightly, the predictions of the geometric mean across targets for each participant. Thus, the
individual models capture different user behaviours and performances such that no single
model successfully accounts for the performance of all participants. However, by averaging
the simulation results over combinations of models, the overall performance of individual
participants is better predicted, both in terms of task times and selection accuracy.

The combination of abstracted models generally overestimated the selection accuracy of
participants (with the exception of pAR). This is expected as some phenomena were not
modelled by the abstracted models: that the previous segment of the target could be falsely
selected if the user switched mental states too early, and that the first segment of the wheel
is sometimes falsely selected. Participants’ comments in the experiments indicated that this
second phenomenon was due to not being well prepared to make a selection, explaining why
for a few participants the first segment of the wheel was most often mis-selected. On the
other hand, setting the probability for switching back to the rotation state to 0.7 (for the
abstracted min simulator and abstracted real models) proved to be a useful approximation
for simulating the observation that the segment after the target was sometimes selected.
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Figure 5.10: Comparison of models showing the typical distribution of time to make a correct
selection for the simulation models. In general, the continuous models match the
actual timing of the peaks in the real distributions while the abstracted models
slightly underestimate the timing. The shaded regions represent the 95% PI of
the simulated data.
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target segment) on selection of targets for p009. The figure highlights that a
difference between when the participant switched mental states accounts for the
difference between the segments selected for targets 4 and 5.
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This occurs when participants have started to imagine the extend class, but due to the
delay in switching mental states, miss the target segment; if they cannot then switch back
to the rotation state in time, the arrow continues to extend and select the next segment.
This phenomenon was also observed in the abstracted simulator models, where the ability
to switch back to the rotate state was modelled explicitly with a distribution of expected
times for each participant when the arrow would extend even if the participant switched
back to the rotation state. The accuracy of these predictions in comparison to the actual
data varied between participants and between models, indicating a scope for improving the
models.

In general, the IAAFT models better captured the rate of false extensions occurring during
the rotation time, leading to the observation of a decrease in selection accuracy as the
target angle increased, while the Markov models were more optimistic in their predictions
of selection accuracy. Depending on the participant, this influenced the models which
provided the closest match to the selection accuracy. Interestingly, the MAE of the all
the simulator models taken together is lower than either of the IAAFT or Markov models
combined separately, highlighting again that the combination of results from different models
strengthens the overall predictions. Combinations of models also better capture an overall
performance as different models tend to account best for the selection accuracy of different
target segments for each user. The fact that different models match the behaviour for
different segments for each participant may indicate that the position of the target affects
user perception. For example, for user p009, it is possible that the position of the target
segment meant that her perception of timing was different, such that she started to rotate
the wheel earlier for some targets, leading to a proportion of trials where the previous
segment before the target was mis-selected.

The main limitation of attempting to simulate user behaviour for the REx paradigm from
binary calibration trials is that information about the behaviour of the classifier output
during a prolonged period of imagining the same mental state is not available. For some
participants, this was nevertheless modelled very well by the simulator models. For a few
participants, these deserve further consideration. For participants p008 and p012, it was seen
that although the continuous IAAFT model is able to better account for the overall selection
accuracy, the model falls short of following the trend of the actual data on inspection of
the selection accuracy of individual targets. Thus, the two users may be thought to be in a
category of users for whom a different model might be better used, namely a model which
uses the false extension rate based on an idle (non-control) state. On the other hand, the
task timings for p008 showed that there were instances of correct selections which took a
long time, lasting as long as 2 minutes, suggesting that the issue was not that he could
not maintain the correct mental state but that he was unable to switch at the right time.
This is also supported by the underestimation of mean geometric mean task times for this
participant. For p006, predictions of mean geometric mean task times much longer than the
actual recorded data (>20 seconds longer on average), combined with the higher selection
accuracy where this occurs for the continuous Markov model (where wrong selections were
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due to terminating the trials after 240 seconds) and the abstracted min Markov model,
indicates that the false extension rate during rotation, the ability of the participant to
switch back to the target, and the time taken to reach the extension thresholds, were not
sufficiently represented with the models.

The combination of different models allow one to strengthen their predictions about per-
formance. Unfortunately, in this case this also comes at the cost of the time required to
perform simulations. The abstracted min simulator and abstracted real models, which use
distributions of the time taken to switch between mental states but not the false extension
rates, largely provide a good approximation to real data in terms of the selection accuracy
and time-to-selection. Although the continuous models should by intuition be the best pre-
dictors of performance as they are intended to directly model the classifier output, they
take longer to run and are not necessarily better predictors of performance. The continuous
simulator requires simply generating classifier output and inputting these directly into the
REx paradigm, while there are more overheads of abstracting the statistics and developing
the finite state machine and behaviour. However, each run of the continuous simulator
takes longer than the abstracted method and thus a larger number of simulations can be
run with the abstracted models in a shorter time. In addition, by using the abstracted
models, different aspects of control can be isolated in order to find out what the important
elements are for controlling the paradigm.

The simulation exercise highlights several applications of offline simulation. In the first
instance, simulation of a novel paradigm can be used to identify the various behaviours
that might be expected. For example, the point of time at which the participant switched
mental states had an effect on the selection accuracy, and simply setting a probability of
being able to switch back to the rotation state upon missing the target segment accounted
for selection errors. Thus, although offline analysis does not provide indications of workload,
it can be used to establish an expected task performance for a given user with known control
characteristics. This was supported by McFarland and Wolpaw (2003), who showed that the
trends in the selection accuracy could be predicted by simple simulations. However, as the
paper explained that individual differences give rise to the need for optimising the interface
parameters, it would be useful to automatically infer what these might be for a particular
participant. Although this was not addressed in this experiment, the simulation results
closely match performance in the novel paradigm in which the parameters were individually
tailored to each participant. These initial results are promising as they indicate that by
refining the simulation models, one might be able to select the optimal parameters by
simulating the task performance with various interface parameters.

Another use of simulation is that having fine tuned the models to find the the control
characteristics that provide the best predictions of task performance for a given paradigm,
these can be used to provide more accurate predictions of task performance for a particular
user. For example, as evidence suggesting that task accuracy improves during a more
motivating task as compared to calibration trials (Leeb et al. (2007); unpublished data from
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REx trials), the abstracted models may be thought to be good indicators of performance
where participants are performing well: increased motivation may lead to better control of
the rotation, and thus fewer false selections would be made. Similarly, being able to choose
the target rather than being shown which segment to select may enable the participant to
choose the correct one. However, the results from the abstracted models indicates that there
is a baseline level of expected errors that would be made by each participant. Future work
could examine the relationship between the accuracy of simulated data and actual data
for calibration trials compared with performance in a real application. Since individual
variability between participants and sometimes within participants is large, having useful
predictions of task performance can lead to improvements in the paradigms, or be useful
for optimising parameters for the paradigm, as previously mentioned. Identifying categories
of participants may also lead to better predictions about how well they are able to control
different paradigms, as what works for one participant may not be best for another. Initial
parameter values or paradigms can be selected based on identifying classes of users, which
could then be fine-tuned for each participant.

Since a small number of actual trials were performed by each participant, the results from
the simulation data should be taken with caution. Typically in the experiments reported
in the BCI literature, individual participant data is accumulated over several sessions of
trials. Here we only used data from one session; nevertheless the simulation results are
promising as for most participants the selection accuracy could be well predicted. This
provides a motivation for improving the models in order to make better predictions about
performance. Calibration tasks can be better chosen that will provide the data required for
the task estimation. It is possible that collecting data via a game, for example, rather than
using the more monotonous calibration trials might be useful for predicting performance in
other tasks. This data could be used to generate a user model that could be used to predict
which system would be easiest for a particular user to use at a given point of time. The
current simulation results provide a grounding which indicates that it would be valuable to
use these trials to optimise the performance of other interfaces. In addition, the rather more
motivating trials may provide more useful data as they might match actual performance in
an actual application which would be motivating to an end user.

5.6 Addendum: use of the online simulator for development.

The simulator described in Chapter 4 was used extensively in an online manner in the de-
velopment and debugging of the REx paradigm and its experiment, and the music player
described in the next chapter. In the first instance, this led to the conclusion that the REx
paradigm could be controlled using the BCI system. Some observations that were made
during use of the online simulator were used to make changes to the system before asking
people to use it in a real experiment. These included usability issues such as the timing
of when trials should start and stop, and other minor bugs such as visual disturbances.
Parameters used for the selection mechanism were also experimented with in order to de-
termine suitable initial values. All of this was possible because the classifier output values
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were fed directly into the system such that the possible effects of delays and fluctuations in
the signals could be experienced without having to use a BCI.

Three participants used the simulator before trying out real BCI trials and provided com-
ments on the similarities and differences they felt between the two. An interesting phe-
nomenon that had been uncovered during development and debugging was that when switch-
ing between left and right classes in the REx paradigm, it was easiest to ‘relax’ to an idle
state by releasing both keyboard keys before depressing the right shift key for the right (ex-
tend) class. When participants using the simulator had trouble with extending the arrow,
this strategy was recommended as the useful thing to do. Although it is difficult to say how
generally this strategy applies, one person who participated in BCI trials after using the
REx paradigm remarked, ‘your advice about having to let your mind rest/go blank before
extending totally applies here as well. I think it’s even more important when using BCI.’
On the other hand, he commented that it was easier to switch between mental states than
in the simulator.

Other potential differences between the simulator and the real BCI could be identified.
One participant mentioned that it the REx mechanism was slightly more frustrating in real
BCI than with the simulated BCI, while another participant clearly enjoyed the BCI trials
more than using the simulator as he expressed, ‘I can’t get over the fact that I’m sitting
here just thinking about moving the cursor and it’s actually moving’. Thus, the novelty of
actually using one’s brain to control the system cannot be simulated by a simulator. On the
other hand, it is difficult to identify whether differences in the perception of control arose
from weaknesses in the simulation model or individual differences. Since the simulator was
intended to represent one particular user, it is possible that any given user could perform
better or worse. Validation of the simulator is therefore necessary if it is to be used to capture
subtle differences in individual performance. Possible ways of validating the simulator for
the purposes of the subjective feel of control have been described in Chapter 4.

5.7 Conclusions

This chapter attempted to use the data from binary calibration trials to predict the task
performance (selection accuracy and time-to-selection) of a novel selection mechanism, the
Rotate-Extend (REx). It was shown that individual models are collectively able to capture
a range of observed behaviours, and that averaging over the predictions of the individual
models (ensemble modelling) provides a closer match to users’ actual performance than do
the individual models on their own.

The data from binary calibration tasks were insufficient to adequately predict the task
performance in the REx mechanism for a couple of participants. Some possible reasons are
that the binary calibration tasks did not capture the user’s ability to sustain imagination of
the MI task which is a big part of controlling the REx selection mechanism, and that there
are non-stationarities in the EEG which may affect task performance.

139



5 Applications I: the REx (Rotate-Extend) Paradigm

The chapter also highlights two potential uses of offline simulation. Firstly, offline predic-
tions can be used prior to any real user trials to analyse and predict possible user behaviours
and task performance for the design of interfaces. Secondly, models that provide the best
predictions for actual user behaviour can be used to identify and select the most suitable
paradigm to be used by a particular participant, even for a particular day.

Finally, a brief reflection on how the simulator was used in an online manner for debugging
and development was provided. Several usability issues and bugs could be identified be-
fore real BCI trials were carried out, and participants’ experiences of real BCI after using
the simulator indicated that further validation of the simulator and investigation into the
similarities and differences in user experience of control for actual and simulated BCI is
required.

140
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Music Player

Summary. This chapter demonstrates a use of the simulator described in Chapter 4, and
the design process described in Chapter 2, to develop a BCI music player for end users with
LiS. Video prototypes were shown to participants with physical disabilities in order to elicit
feedback and comments about what they thought of the system (which would feed into the
design of the system), and the online simulator was used in the lab and as a longitudinal
study with healthy users in their own homes or places of work. The mixed-users, mixed-
methods approach allowed us to form firm conclusions about the importance of control and
individual differences in developing a BCI music player application for end users.

6.1 Introduction

As mentioned in previous chapters, the ability to communicate is of paramount importance
in the quality of life for persons with LiS (Kübler et al., 2001). To this end, the vast majority
of BCI systems have focused on developing spelling programs. However, a similar shift from
developing ‘useful’ applications to interactive, social, hedonic systems which aim to provide
users with other means to express themselves or communicate as seen in mainstream HCI
has been shown in the BCI literature. For any given individual who finds themselves in
a locked-in state, the functionality most desired is likely to be different. For example, the
most successful BCI application shown to enhance the quality of life of a LiS person so far
is the P300 brain-painting application (Münßinger et al., 2010). Other applications which
can be considered to have an aim of providing entertainment and social inclusion include
telepresence robots (Tonin et al., 2011) and games (Nijholt et al., 2009). Along these lines,
music can be a large part of any given human being’s life, but as far as is known, there has
not been an attempt to design and develop a music player application for end users of BCI.
It is not unreasonable to speculate that a person for whom music is a big part of their life,
and who finds themselves in a locked-in state, would highly appreciate the ability to engage
with music by selecting music to play.

Several issues emerge for developing a BCI application. For a 2-class MI BCI, some issues
are that it is difficult to have an intentional non-control state, and that making selections
is slow. Thus, the prototyping exercise aimed to determine the features of a music player
that would be sufficient for use. In particular, the aims were to discover how end users

141



6 Applications II: Case Study in Developing a Music Player

might choose to select music to play, how they might choose to cope with or use a system
that randomly started and stopped music, and what functions or features found in typical
desktop music players could reasonably be eliminated from a minimalistic music player.

One way to reduce the number of selections required to choose music might be to incorporate
artificial intelligence techniques which generate playlists given a small number of inputs.
For example, Tzanetakis et al. (2009) implemented a system based on self-organising maps
to organise and retrieve music. The system can receive several types of input and was
evaluated with one user with cerebral palsy who uses his lips to activate a switch as input
into a computer. Apart from this example, there is a dearth of available music players
which have been designed with disabled end users in mind. The current system sought to
understand the functionality that would be important to end users of a music player. In
particular, the functionality of the Moodagent1 system is employed in the prototype. This
is a commercial software that can classify all the music tracks in a user’s collection with a
range of features, including predictions of subjective ‘mood’, genre and tempo of the music.

Following a UCD approach, the design process proposed in Chapter 2 was used to obtain
valuable input from users at different stages of design and development. Firstly, an initial
user requirements capture questionnaire was used to explore disabled participants’ current
music listening habits. Video prototypes were also used to explore participants’ reactions
to possible ways in which a BCI-controlled music player might work. The results were
compared with healthy and disabled participants’ usage of a music player prototype. Healthy
participants controlled the applications using various inputs including mouse, the MI-BCI
Simulator described in Chapter 4 and real BCI, and disabled participants’ used various
control inputs as well as real BCI.

The number of participants involved in each phase of the process are summarised in Table 6.1
and Figure 6.1, which show the level of physical disability the participants had according
to categories defined within the TOBI project (see General Discussion, Section 6.6, for
discussion). For the purposes of the study, disabled participants were grouped according to
the level of aid required to use a computer; for example, the largest group of participants
had a Moderate disability where they were able to move around in a manual or electric
wheelchair and use their arms but had limited or no grasp function. Note that a few
participants took part in more than one study.

1www.moodagent.com
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Table 6.1: Summary table of participants to all the user studies reported in this chapter,
grouped according to the degree of disability with regard to the communication aid
needed or assistive technology required to use a computer.

Degree
of Im-
pairment

Definition Number of participants

Quest-
ionnaire

Video
proto-
types

Prototype
(non-
BCI)

BCI Total

None No known physical disabil-
ity

0 0 10 6 15

Minor Slightly impaired limb
movement. Able to use
verbal language

3 1 0 0 3

Moderate Severely impaired lower
limbs or no verbal language
or severely impaired upper
limbs or hemiplegic

2 3 3 1 6

Severe Almost tetraplegic. Able
to use verbal language and
able to handle special input
device, e.g. switch or joy-
stick (two channels to con-
trol ATs)

6 1 1 2 9

Major Tetraplegic with very little
residual control of muscles
and able to use verbal lan-
guage or almost tetraplegic
(able to handle special in-
put device, e.g. switch or
joystick) but no verbal lan-
guage (effectively one chan-
nel to control ATs)

2 1 0 1 3

Locked
in

Completely tetraplegic, no
verbal language, very lit-
tle residual control over a
few muscles e.g. eye move-
ment (only passive commu-
nication possible)

1 1 0 0 1
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6.2 Initial Requirements Capture

In order to find out what level of access disabled users currently have to music and to
determine what the goal or purpose of a music player should be, an initial requirements
capture phase was carried out using questionnaires and interviews.

6.2.1 Methodology

A questionnaire was developed in conjunction with AT professionals, clinicians and re-
searchers in the field, and administered to participants having some level of physical dis-
ability in the form of interviews. For users who are unable to speak and otherwise also have
limited muscular control, a well-designed questionnaire can help to obtain information in
the quickest and least effortful way. In such cases, the interviewer reads the question to the
participant, then reads through the options linearly, pausing for the participant to indicate
a ‘yes’ or ‘no’ to select or reject the option. 15 participants (5 female) aged between 18 and
55 (mean 40.9) answered questions about their requirements for a music player, however
one set of results was removed from the data as that particular participant had no interest
at all in using a music player. The reported results are thus results from 14 end users with
varying levels of physical disability. The questionnaires were administered either by BCI
researchers or AT professionals in Italy and Germany.

6.2.2 Results

Current access to music. Among the participants interviewed, 2 users had no access to
music, 2 only had access to music through a stereo or CD player, while the rest had access to
computer software either through standard keyboard and Mouse inputs or through assistive
input devices such as joysticks, single switch devices or speech recognition software. All of
the users who had access to music via a computer did so through standard software such as
Windows Media Player, Winamp or iTunes, or websites such as last.fm and youtube.com.

When asked what they liked about their current access to music, users who had access to
music through a computer indicated attributes such as ‘fast, easy to use, reliable, and not
dependent on a specific operation system’, the ability to make a playlist with Youtube, and
being able to organise music into folders that are easily accessible. Negative points about
one user’s current access to music included it being ‘too exhausting and it needs verbal
language recognition’.

Desired uses of a music player. From a list of six possible uses of a music player,
participants were asked to choose their top, second and third reasons for using a music
player. For each participant, the top reason was awarded three points, the second two points
and the third one point. According to this scoring, the most desired uses of the music player
are to have control over the music listened to and to pass the time enjoyably while alone
(Table 6.2). Thus, listening to music through a music player is seen first as an individual
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Figure 6.1: Log number of participants for each study, according to level of physical ability.
Bars from left to right represent the stages of the design process from requirements
capture, to prototyping, to evaluation of the final prototype. Participants from all
levels of physical disability are represented in the requirements capture and video
prototyping stages, and usability studies are carried out with able-bodied partic-
ipants and participants with moderate-to-severe disabilities. Finally, evaluation
of the BCI prototypes are carried out with able-bodied people while the sample
of people with disabilities is concentrated on those having more severe (major)
physical disabilities. See also the general discussion (Section 6.6).

activity rather than as a means of enhancing social interaction between friends and family.
(This is contrasted with ratings for a photo browsing application which participants gave in
the same questionnaire, for which developing a stronger connection with friends and family
was the second reason for desiring the application after the desire to control selection of
photos.) Still, one user indicated the desire to be able to compile playlists for friends, which
indicates that sharing music might also play a role in a person’s social circle.

Interestingly, an important use of a music player would be to control music in the background
while doing other tasks. The answers to the questionnaires are reflected in one user’s
comment that an important feature for him would be that the music player is able to be
‘minimized but still controllable (play/pause etc. appear in the task bar; at the bottom
right when using windows media player)’. Even for a BCI system, it is possible that a
suite of applications would allow a user to select and play music before switching to another
application such as sending an email or browsing the Internet.

6.2.3 Implications for Design

Results from the questionnaire indicated that users’ goals of having a music player would
be to control the music they listened to, and to spend time alone enjoyably. Thus, the
development of the prototypes focussed on finding out how users would desire to control
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Table 6.2: Scores according to top most desired uses of a music player (Most desired=3 points,
2nd most desired=2 points, 3rd most desired=1 point)

To have control over the music I listen to. 34
To pass the time enjoyably while I am alone. 22
To use music to create different atmospheres or moods. 14
To use music to express my feelings or thoughts. 7
To find new music that I have not seen before. 6
To have a stronger connection with my friends and family through music. 0

a music player given the constraints of BCI control characteristics. In particular, the aim
was to to discover what functionality and trade-offs users would be able to accept given the
constraints of BCI control characteristics.

6.3 Video prototype and scenarios

While the questionnaire was designed to find out the general goals that users desired the
applications to achieve for them, it was necessary to address the specific issues of control-
ling such an application using a MI-BCI. With such a BCI, error rates and time taken to
make a selection can be quite high. In addition, work on being able to control BCIs truly
asynchronously is in progress, with current systems unable to stably allow for an ‘idle’ or
non-control state where the user is not trying to give a command to the system. As these
are issues that are not common with other input technologies, it is important to obtain
feedback from end users about how they might wish to use such a system. Video scenarios
were chosen as a method of demonstrating these, partly because it would be the easiest way
for AT professionals to demonstrate the prototype without requiring extra training.

6.3.1 Methodology

Video prototypes of the interface were created using cardboard and paper cutouts (here
referred to as a paper prototype). As users were likely to be familiar with a scanning
system from using other AT systems, a scanning-based system was used to demonstrate
some features of the music player.2 The aim was to show how a music player controlled
with an MI-BCI might work, and to highlight the problems with errors and a longer time
taken to achieve goals that might be encountered in this system. Thus, although a scanning-
based system might not be used in the eventual music player design, it allows the features of
the interaction to be easily illustrated and users naive to BCI to understand what was going

2Generally, a scanning system is a method of computer interaction where an on screen ‘scanner’ automati-

cally cycles through selectable objects on the screen, marking them in succession for a set period of time.

With a single switch scanner, an interface object is selected when the switch is depressed while being

marked for selection. Additional switches add functions such as reversing the direction of the scanning.

Examples of scanning interfaces can be found elsewhere, e.g. in Roark et al. (2010) and Biswas and

Robinson (2008a).
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on. Before any of the music player control options were presented, users were shown a video
explaining where the controls and playlist were in the ‘music player’, and how the scanning
system worked with imagining hand movements as in BCI (still frame of video shown in
Figure 6.2). 7 participants (1 female; age range 18–46, mean 32.4 years) took part in the
feedback sessions in the form of 4 individual interviews and one focus group. The interviews
were conducted by BCI researchers in Italy and Germany, while the author conducted the
focus group in Italy through an Italian translator who was an AT professional. Note that
all participant quotes are interviewers’ translations; for the interviews, notes were taken by
the interviewer, and subsequently analysed by the author.

6.3.2 Results

Starting and stopping music. To address the issue of there being no true asynchronous
control (i.e. a selection to the system would always be made after some period of time),
users were shown a video prototype of a music player that started and stopped the music,
or skipped to the next or previous track even though the listener was not trying to control
anything. When asked if they would use this music player at all, 5 of the 7 participants
said that they would accept a system that started and stopped randomly, as long as this
did not happen too often as it would quickly become irritating or tiring. However, one of
the participants also indicated a desire to be able to stop the BCI if this happened. For
the other two participants, this was not an acceptable music player. Participants were also
asked whether any of a set of options would be preferable to having the music player start
and stop randomly. For each option, a video demonstration was shown to the user and are
described as follows:

1. do a sequence of binary selections to activate, or unlock, the player (in this example,
left, right, left, left)

2. remove some functions that would abruptly change the music being played more often
(for example, skipping to the previous or next track)

3. create the playlist but someone else can decide when to start and stop the music

In response to this question, three of the users would prefer to use a sequence of controls to
lock and unlock the music player, while two of them indicated that they would use the BCI
to create a playlist and then take the cap off. One person preferred the default, where the
music started and stopped randomly, while another would not accept any of the available
options. Users also suggested being able to choose when to use the different options.

Playlist generation methods. This part of the sessions aimed to find out how users would
choose their music given a range of options and a demonstration of the time it could take to
select something to play. Users were shown videos of two commonly used ways of selecting
music that are currently in use: iTunes to select an individual track and Moodagent on a
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Figure 6.2: Still frame of music browser video prototype for an example video. The ‘screen’
of the music browser is created with a cardboard frame and paper. The current
playlist of songs is the ‘panel’ on the left. The top panel on the right of the screen
is a list of functions such as play/pause, back/next, or change music. A ‘scanner’
is simulated with a blue strip which is moved vertically as the video progresses.
Finally, the bottom-right panel shows the MI-BCI feedback: if the blue feedback
bar is pushed to the right, the scanner selects the function at the scanner’s position.

mobile phone. All of them would use an iTunes method of choosing their music (searching
for individual songs), while 4 of them would use the Moodagent system.

Users were shown several options for generating playlists using a MI-BCI, using the same
video prototyping method as in the previous section. Video stills from these options are
shown in Figure 6.3. In the first option (left of figure), the system tries to guess the kind of
songs the listener may want to listen to by presenting them with one song at a time; the user
then makes a binary decision to accept or reject the song. In the second option (middle),
the user is presented with a choice of moods or genres, which the person can choose in
order for the system to generate a playlist. In the third option, the user is able to select a
combination of features by choosing a level for each available feature. The combination is
then used to generate an automatic playlist. In the fourth option (right), the user chooses
the artist, album or song they desire to listen to with a binary tree menu selection. The
expectation was that, on being presented with the slow option of selection with the binary
tree menu, participants would prefer options that would return a playlist of songs at a lower
cost (i.e. options two and three).

Participants’ opinions of the playlist generation options were varied and some did not give
an explicit preference for the choices available. For the participant with minor disabilities,
all the options seemed good to him but he indicated that he would like to have a choice
between different options. One participant who was moderately disabled thought the same
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but suggested that for the accept-reject option, sets of songs could be accepted or rejected
rather than single songs. Another thought that the accept-reject option might be good
for a small collection of songs but difficult for a large collection, liked the mood features,
especially the idea of being able to select combinations of features, and thought that it
should be possible to make the choice to choose an album. The third participant with
moderate disabilities preferred the choice of selecting an album, saying that he preferred to
‘choose with consciousness’ the music he listens to.

For the participant who was classed with a severe disability, none of the options appealed
and he said, ‘I would like to add single songs to a playlist by “scanning” all my available
songs’ in a linear fashion. He also suggested that the system could allow him to easily
select songs that he listened to most of the time based on past history. The end user with
a major disability found the option to create a playlist based on configuring a number of
features ‘very very nice’. However, he also indicated that it is ‘fundamental’ to find a song
by searching for the artist, and that it should always be a possibility. Finally, the lady
with LiS indicated that the first option was the best. She did not find the mood features
acceptable and said that although it was slow, the fourth choice to select individual tracks
was preferable as she would want to select songs precisely.

6.3.3 Implications for Design

The desire for choice and customisability amongst users was apparent, as well as the ability
to select exactly what music to listen to (at least as an available option). Users showed
differing levels of tolerance to imprecision in music selection. For two of the participants, it
would be preferable to remove the cap after selecting songs to play. It is somewhat unclear
what was meant by this, although one can speculate that the participants would have wanted
to select the playlist and start the music playing, before asking someone to remove the cap
for them. This would allow control of the choice of music and when it started playing, but
not when the music would stop. An alternative view is that, it is much easier to indicate to
a human being (such as a friend or carer) the desire to stop music in comparison to what
music you would like to listen to. As participants indicated the desire for control and to
select exact songs to listen to, in the next stage the aim was to explore and confirm this
finding with actual prototypes and explore how users would actually trade off precision of
song selection and music player usage with degrading levels of control.

6.4 Prototype study

Given that the priority disabled participants had for a music player was to be able to control
the music they listened to, both in terms of functions such as playing music and in creating
playlists, these themes were explored further in the context of how preferences, expected or
actual use of a minimalistic music player would change as control degraded. In particular,
the aims were to find out
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Figure 6.3: Playlist selection options presented to disabled participants. Top-left: The system
suggests songs to the user, which are accepted (moving the feedback bar to the
left) or rejected (moving the feedback bar to the right) by the user. Top-right:
The system presents several moods or genres to the user, which can be selected
using a scanning system. Bottom-left: the system allows the user to set a level for
each mood or genre, which then provides a combination of choices for the user.
Bottom-right: The user selects a specific artist, album or song through a binary
tree menu selection.
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1. how [expected] use of the system would change as the level of control diminished:
when people would simply stop using the system and when they would reduce the
time spent listening to music.

2. how people would use the simple mood playlist generation system over selecting spe-
cific albums or songs where this would take a slightly longer time to do, and how
people would change the way they selected music to play as control degraded. It
was expected that with diminishing control, people would prefer to use the random
or mood selection methods rather than the album selection, as it would take far less
time to generate a playlist of songs to listen to with the former option than with the
album selection.

3. what functionality people would notice was missing, or would find unacceptable not
to have.

The prototype was tested and evaluated with a variety of users and a variety of input
modalities. Firstly, non-disabled participants evaluated the prototype in a single session
in a usability lab (Section 6.4.2). Several also went on to evaluate the prototype in a
longitudinal study described in Section 6.4.3. Disabled end users evaluated the prototype
with a variety of input mechanisms (Section 6.4.4), and finally healthy participants and
disabled users evaluated the prototype using real BCI as reported in Section 6.4.5. Finally,
the results from the four user studies as well as those from the questionnaires and video
prototyping in previous sections are summarised and recommendations for building a music
player discussed in Section 6.5. The next section describes the design of the prototype.

6.4.1 Prototype design

As the goal of the music player was to be simple and minimalistic, the number of functions
were reduced from the array found in a typical music player to three: play or pause, ‘shuffle’
which removes the current song from the playlist and rearranges the songs in the current
playlist, and 3 different options for choosing music to play. These were Random, Moods
and Albums (Figure 6.4). ‘Random’ returned a playlist of songs randomly selected from the
entire music collection. ‘Album’ took the user into an album browser that was visualised
as a CD shop. An album could be selected by successively selecting ‘Left’ or ‘Right’ on
the wheel according to an alphabetically divided binary tree, until an album was selected.
‘Moods’ allowed the user to select one mood from four (‘Happy’, ‘Angry’, ‘Romantic’ and
‘Calm’). Selecting a mood returned a playlist generated by Moodagent technology as de-
scribed previously. The motivation for using this technology is similar in BCI and mobile
devices. In both settings user input can be slow and frustrating, and typically users do not
explore their music collections, but tend to repeatedly listen to a small subset of music. The
Moodagent software allows users to explore more of their music collection, without having
to enter details about album or track titles or band names. There is a trade-off between
low-effort, but easy activation of playlist generators, and the increased effort (significantly
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so in the case of BCI) required for precise control of track selection.

The functions of the system were arranged according to the REx selection mechanism which
was described in Chapter 5. In this system, the functions were placed in a wheel where
spokes of the wheel divided it into segments, one segment per function. The music player
was configured to allow for several input modalities (selection modes). In all selection modes,
functions could only be selected within the wheel interface. Apart from Mouse mode, the
selector was represented by an arrow which could either be rotating clockwise around the
centre of the wheel, or extending to select a function corresponding to the segment being
pointed at.

• In Mouse mode, segments of the wheel were highlighted when the Mouse pointer
hovered over them. To select a function, the Mouse button was clicked within the
corresponding segment.

• In Single Switch mode, a single click of a keyboard key or single switch started the
arrow rotating 1 second per segment of the wheel and a second click extended the
arrow.

• In Two Switch mode, which was intended to be an intermediary to BCI control mode,
pressing and holding the left shift key rotated the arrow round, while pressing and
holding the right shift key extended the arrow.

• The controls for the BCI Simulator mode were the same as that for Two Switch mode,
except that the system was intended to simulate the control of a BCI system where
the system is always analysing brain signals and producing input to the application
(since there is no idle or ‘non-control’ state in our current BCI system). Thus, in
this mode the arrow would randomly rotate and extend even when there was no
keyboard input. The ‘lock’ function allowed the user to disable all functions apart
from the corresponding ‘unlock’ function, which then had to be selected twice in order
to enable the other functions to control the music player. There was also a substantial,
random delay as in Quek et al. (2011) and the arrow was set to rotate 2.5 seconds per
segment.

6.4.2 Online simulator: lab session with able-bodied participants

Methodology

Participants were 8 able-bodied people aged 23-34 (5 male) who all own and listen to digital
music. They were told that the prototype being tested was designed for use with a BCI
system, and that the target end user group was people who are severely physically disabled.
Initially, users completed a questionnaire about their current listening habits. They were
asked to identify their current contexts of listening to music with a request to ‘Draw a
diagram of your music listening in different contexts’. They were introduced to the system,
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Figure 6.4: The music player design in BCI mode. In a 2-class BCI, one mental state is used
to rotate the arrow round the centre of a wheel, while the other mental state is
used to extend the arrow to select a segment on the screen.

and for each selection mode (Mouse followed by an intermediate ‘Two Switch’ mode and
then the BCI Simulator), they were asked to carry out some tasks and to provide subjective
feedback on the system.

For each user-defined context and input modality, participants were asked to consider a
situation where they could use only the current music player system (by means of the
input modality) to access their music. They were asked to estimate the length of time
they would expect to use the music player, and this was compared with their original
estimate of the length of time they usually spend listening to their own music. Secondly,
participants were asked to estimate the proportion of time they would choose to play music
selected using each playlist option. (For example, a person might choose to select music
using the Mood selector 10% of the total listening time, 50% of the time with Album
and 40% of the time with the Random selector.) They also completed a System Usability
Score sheet (SUS) (Bangor et al., 2008), assessing the music player in each input modality.
The Microsoft Desirability Toolkit (Benedek and Miner (2002), (henceforth shortened to
Desirability Tk)) was chosen as the means for obtaining experiential feedback as it is more
engaging than a simple questionnaire, allows users to give qualitative feedback on what they
want, and enables the dominant feelings they have about the system to emerge. Users are
also encouraged with this method to provide negative feedback on the system (Travis). 80
words were randomised and presented in the form of a table in Microsoft Word. Users were
asked to choose 3-5 words to describe their experience with the music player for each input
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mode. This formed discussion points with the experimenter.

Results

Contexts. Participants identified between one and four contexts with which they might
use a music player on the desktop: four people identified one context, one identified two,
two identified three and one identified four. Thus, 16 contexts were identified in general.
All participants defined their contexts in relation to life activities such as ‘working’, ‘get-
ting ready for school’, or ‘studying’. Additionally, two participants explicitly defined some
contexts in relation to the desire to create or express moods: ‘When I can’t focus’, ‘When
I’m sad’, ‘Creating moods’. A few participants identified contexts for which they would not
use a desktop music player such as ‘on the bus’ and ‘gym’; these are not considered in this
study.

Overall evaluation. Figure 6.5 (left) shows a summary of the user ratings of the music
player based on the SUS for each mode, indicating a decreasing trend from full Mouse
control to BCI Simulation control (average scores were 76.25 (±12.4 SD), 65.5 (±6.6 SD),
46.0 (±16.6 SD) for Mouse, Two Switch and BCI Simulator modes respectively).

From the words presented in the Desirability Tk, each user selected 2.9, 1.1 and 0.8 positive
words on average for Mouse, Two Switch and BCI Simulator modes respectively and 1.1,
2.0 and 3.4 negative words to describe their experience with the music player. Positive
words for the Mouse mode reflected the aesthetic appeal, simplicity and overall ease of
use of the interface (‘Attractive’, ‘Easy to use’, ‘Simple’), and the novelty of the mood
functions (‘Creative’, ‘Innovative’). Two participants, s2 and s6, collectively selected the
words ‘fun’, ‘entertaining’ and ‘stimulating’ to describe their overall experience with the
player. Negative words reflected difficulty in using the album selection, with the chosen
words reflecting individual differences in tolerance or perception of difficulty, ranging from
no comments at all to ‘confusing’, ‘engaging’ (s4, meaning it required concentration), and
‘time-consuming’ (s1: “Didn’t like the album selection - would just directly type in the song
if i knew the name... Not complicated - just require me to think too much to select.”).
4 participants selected the term ‘usable’, possibly reflecting neutrality or slight negativity
towards the overall perception of usability.

In Two Switch mode, s2 added the word ‘appealing’ to the list of positive terms, mean-
ing that ‘the idea that you can use your brain to control is interesting... but it is time-
consuming’. The number of negative words increased, with 5 participants selecting ‘time-
consuming’, and expressing an annoyance that was not previously present with the words
‘frustrating’ and ‘annoying’. Participant s7 chose no positive words, saying that it was
‘slow’, ‘system-oriented’, ‘stressful’ and ‘old’: it felt like taking a backward leap into the
past, where technology is slow and difficult to use. Similarly, s5 selected ‘hard to use’ and
‘too technical’. s6 said it was ‘irrelevant’, since there would be no need for using such a
control in everyday life.
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Finally, in BCI Simulator mode, the feeling of unpredictability surfaced with selected words
like ‘misleading’, ‘inconsistent’, ‘insecure’, ‘uncontrollable’ and ‘unpredictable’. The number
of participants selecting the word ‘stressful’ increased from 1 to 3. s2 explained that the
mental load for using the system was high as one had to ‘pay attention to what the system
thinks - what inputs it’s receiving, like whether it thinks you wanna go left or right, so you
need to be constantly paying attention to it, and you need to be thinking to let the key go
before your option and what your option is and so on - so high mental workload - a lot more
than the previous one (the halfway one).’

Only two participants selected any positive attributes to describe their experience of the
music player in BCI Simulator mode. s4 again chose ‘appealing’ to reflect that the idea of
using a BCI was appealing, while s8 chose the words ‘motivating’, ‘desirable’ and ‘respon-
sive’. The first two adjectives reflected his view of the online simulator as a game: ‘the hit
and miss thing - coz you didn’t get it right, you want to go and do it again. It’s kind of like
life - like you didn’t get an ‘A’ the first time so you want to try again,’ while ‘responsive’
was chosen to indicate that ‘it kinda gets your brain going - have to use your brain to direct
it. So instead of playing solitaire to get your head going - you know sometimes when you
play mind games to get your head going - you could do that. So that’s partly music and
partly a game. So that kinda gets you going. Just thinking of how to get it to hit on
straight–using-it-wise–because it’s always moving.’

Estimated time spent. In almost all contexts, participants thought that the music player
in Mouse mode was acceptable enough that they would spend the same length of time
playing music with the prototype music player as with their current music playing systems
(Figure 6.6(a)). The exception was for s8 with the context ‘Creating moods’, where he
thought that this was the context where he would definitely want to select specific songs
to play. In this situation, the mouse mode would not allow creation of a playlist of songs,
which in his view would make it difficult or time-consuming to use as normal.

Users estimated their usage (time spent on listening to music using this music player)
would decrease from Mouse (median 100%, quartile range (QR) 100.0–100.0%) to Two
Switch mode (median 50.0, QR 32.1–100.0%) and a slight decrease from Two Switch to BCI
simulator mode in terms of the spread (median 50.0%, QR 25.6–75.0%). There were two
contexts for which participants indicated that they would eventually stop using the music
player altogether as control degraded. Wilcoxon signed ranks tests between conditions
revealed a significant difference between Mouse and Two Switch (z=0.0, p=0.0044) and
Mouse and BCI (z=1.0, p=0.0012) modes, but not between Two Switch and BCI modes
(z=13.0, p=0.3670).

Estimated use of playlist selection options. Figures 6.7(a) and 6.8(a) show the
estimated proportion of time participants thought they would spend using each playlist
generation option, as a proportion of the total time they would spend listening to music
with the music player. In Mouse mode, 6 out of the 8 participants thought they would use
the album selection function at least some of the time, 7 thought they would use the mood
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selection at least some of the time, and 7 thought they would use the random selection at
least some of the time. 3 out of the 4 participants indicated that they would select their
music somewhat differently in different contexts. For example, s1 thought that for relaxing,
there was a purpose for choosing music and thus specific songs would be required, whereas
during a coffee break anything would do. s6 thought that, when she was sad, she might be
more inclined to use the moods functionality, whereas in other contexts she might be more
likely to select albums. Participant s4 indicated that, although he could identify different
times when he would listen to music, he would choose to select music in the same way. This
was similar to s7, who had listed one context as General, as he only listened to music one
way.

Overall, participants expected that they would select playlists using progressively less pre-
cision as the level of control diminished. This is shown by the increasing trend for Random
(median 45%, 55% and 75% for Mouse, Two Switch and BCI Simulator input modalities
respectively) and a decrease in the expected use of Mood (22.5%, 10%, 5%) and Album
selection (15.0%, 5% and 2.5%; quartile ranges follow trend). Typical reactions to the mu-
sic player in BCI mode were that ‘I would only use random, play, and set to lock. It’s
too frustrating to do anything else.’ (s3). In a few contexts, however, participants actually
thought that their use of albums would increase. For example, for the context ‘Creating
moods’, s8 explained that in the Mouse and Two Switch modes he would use Random if the
music player could be started up with a specific set of songs. For the BCI mode, however, he
would use all three playlist selection options. This was ‘because the thing itself is creating
a mood. The whole hit and miss thing - that’s something that’s gonna get you going... the
whole delay thing, that’s interesting.’

Participants’ overall reactions to the mood selection method were mixed. Mostly, a feeling
of ‘cautious enthusiasm’ existed, where there was interest and curiosity but also the need
to try it out for themselves. Typical responses included ‘Yeah I think I would use it’ (s4)
and ‘[it’s] something i can try out and see if it does work. But it’s not something i would
try straightaway. But whether it does work, thats another question’ (s8). s8 also expressed
skepticism in that the mood player could be difficult to tailor to each individual: ‘People’s
moods and genres are different - what it has for happy might not be what someone else has
for happy.’ In the end, 7 out of the 8 participants expressed an interest in using the moods
functionality. The exception was s7, who explained that he was simply too used to selecting
playlists the way he currently does by adding individual tracks.

Functionality. Again, most participants appreciated the simplicity of the music player.
For example, s3 commented that ‘I like that it’s uncluttered. I don’t have to scroll down in
iTunes. If i’m doing multiple tasks at the same time i don’t want a music player where in
order to do anything i to have to process more information.’ However, she also mentioned
that she sometimes wanted to re-listen to a track, and highlighted that this would not be
possible with the current music player. s1 also commented that the computer’s volume
control could be used instead of a volume control in the music player itself.
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Responses to degradation of system control. Participants displayed several responses
with regard to degradation of system control. For the Two Switch mode, most participants
expressed a feeling of the system being slow. Frustration was felt especially when the desired
wheel segment was missed, as they would have to wait for the arrow to rotate all the way
around again. One participant felt that the system required mental concentration. On the
other hand, one participant thought that the idea of controlling the system in this way using
thought alone was appealing. At least two participants also explained that after having been
exposed to the BCI Simulator mode, the Two Switch mode was perceived as being much
more tolerable.

Some interesting responses emerged from observations of participants using the BCI simu-
lator. Several participants exhibited behaviour as if they were playing a game, with phrases
like ‘Come on come on... come on...’ as the wheel was rotating round, and ‘yes!’ when the
correct target was selected. Some enjoyed the ‘challenge’, while most (6 out of 8) expressed
frustration. One participant explained that he would still find the system appealing with
this level of control if it was BCI, as it was a form of eyes-free interaction which would be
entertaining and useful if he was, for example, driving or walking around. As previously
mentioned, one found the system motivating in itself. Still another related the feeling to a
person having to use a BCI with the experienced level of control: ‘Wow, that’s frustrating!
I am beginning to feel for people who really have to “control” things in this way!’

Summary of results

The lab study highlighted individual differences in the preference for imprecision or uncer-
tainty in terms of the choice of music being played, and the tolerance of imprecision or
uncertainty in both the choice and control of music. The differences in the tolerance can be
seen in participants’ responses to the music player as control degraded. Some participants
would have given up using the music player at some level, while others did not think the
controllability would affect the time spent on using the system. Tolerance and preference for
both the controllability of music and the choice of music also appear to depend on context.
For situations where focussed concentration was required, it seemed necessary to select and
play music with minimum or easy intervention, while in other situations part of the enjoy-
ment might actually be to interact with the music player, or to find songs that had not
previously been heard. Thus, the need to tailor a system to individual needs was apparent.

6.4.3 Online simulator: longitudinal use with able-bodied participants

Methodology

Participants in the laboratory session were also asked to install the music player on their
own computers to use in their own work or home contexts. Out of these participants, the
set up was not possible for one user (s8) due to logistical reasons, s7 did not want to use
the player as he was not keen on the mood features and could not accept using the album
mode to select songs to play, and two (s4 and s5) started the study but chose to terminate

157



6 Applications II: Case Study in Developing a Music Player

Mouse Two Switch BCI Sim
0

20

40

60

80

100

SU
S 

sc
or

e

SUS scores for lab study (n=8)

Mouse Two Switch BCI Sim
0

20

40

60

80

100

SU
S 

sc
or

e

SUS scores for longitudinal study (n=5)

Figure 6.5: User ratings of the system for the lab study (left) and the longitudinal study (right)
in different input modalities (Mouse, Two Switch and BCI Simulator) as measured
by the System Usability Scale (SUS). A rating below 60 is generally considered
to be a bad score, while a rating above 80 is generally considered to be a good
score (Bangor et al., 2008). Ratings are comparable for the two conditions, with a
decreasing trend in ratings as the control degrades. Note that in the longitudinal
study, the scores for participant s1 were excluded as he did not use the music
player in the Two Switch mode.
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Figure 6.6: Percentage of time participants would spend ((a)) and actually spent ((b)) listen-
ing to music with the music player for the input modalities Mouse, Two Switch and
BCI Simulator. For the lab study, participants’ normal usage is taken as the self-
reported baseline of 100%, while for the longitudinal study, the baseline of 100%
is the time spent playing music in the Mouse mode. Note that in the longitudinal
study, results from 4 out of 6 participants are shown as data for the other partic-
ipants was incomplete. p0 is the author (designer). Table 6.3 provides additional
information on the order and length of use of the different input modalities.
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(a) lab study showing expected usage in different contexts (n=8). Blank rows indicate that the participant

would not use the music player in this context and input modality.

(b) longitudinal study (n=6 + author/designer) showing actual usage. Blank rows indicate incomplete data

collection (see text for details).

Figure 6.7: Participants’ expected ((a)) and actual ((b)) usage of playlist selection options for
the lab and longitudinal studies respectively. The use of each option (random,
mood and album) is expressed as a proportion of the total time one chooses to
play music. The studies compare how participants would choose to select music
using the input modalities Mouse, Two Switch and BCI Simulator.
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Figure 6.8: Box plots of participants’ usage of playlist selection options for three input modal-
ities. In the lab study (n=8), participants estimated how much time they would
likely use the music player. Usage of playlist options for Mouse (n=5), ‘Two
Switch’ (n=4) and BCI Simulator (n=6) for the longitudinal study show the ac-
tual usage (a similar spread of results is found if only the 4 Two Switch data points
are plotted). Each Box plot shows the distribution of the time spent in a playlist
selection option as a percentage of the total time spent playing music (i.e. ‘time
spent in a playlist selection option’ is considered when the music being played was
generated using the particular playlist selection option).

participation after using the music player for two days. Finally, two additional participants
(p5 and p6, both male) took part in the longitudinal study. Thus, usage statistics for
the user study are reported for 6 participants plus p0, the author/designer who had much
previous use of the system.

Similar to the lab session, participants were asked to use the music player in the three
different input modalities, with the aim of finding out how the choice of playlist would differ
between the input modalities. Because the aim was to examine how the use of the system
changes as the control is degraded, each participant started off using the music player
with the Mouse input modality. The length of the study and way the input modalities
changed were configured for each individual differently. Table 6.3 shows a summary of the
length of time of the study and the way in which the input modalities were cycled through.
Where the participant cycled through the input modalities more than once, the system
automatically switched input modes when the allocated period of time for a modality had
passed. Otherwise, an email was sent out to the participant inviting them to manually
switch to the next mode at the end of the day. The table also shows the number of tracks
that participants used for the duration of the time. As can be seen, some participants chose
to use their entire music collection while others chose to use only a subset of their collection
for the study.

Usage statistics were collected by logging the time spent playing music in each playlist mode.
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Although an attempt to log participants’ context was also made, in the end, the study was
too short to make any conclusions about the relationship between context, input modality
and usage of playlist options. Thus, the results are reported without regard to the user’s
context. Participants to the lab study were asked to complete the same questionnaire as
the lab session before switching to the next input mode. Finally, a post-study interview was
carried out with participants after the completion of the study.

Table 6.3: Length of time of study and order of conditions (input modalities Mouse, Two
Switch (TS) and BCI Simulator (BCI Sim)) for participants completing a longitu-
dinal study using the music player in their home or work contexts.

Participant
(Gender)

Total
days’
usage

Order of conditions (input modes) Num Albums
/ Tracks

p0 (author/
designer)
(F)

18 cycle of 3 days mouse, 3 days BCI Sim, 3 days TS 398 / 4003

s1 (M) 4 2 days mouse, 2 days BCI Sim 5 / 6
s2 (M) 6 2 days mouse, 2 days TS, 2 days BCI Sim 714 / 7867
s3 (F) 6 3 days mouse, 3 days TS, 3 days BCI Sim 76 / 805
s6 (F) 9 3 days mouse, 3 days BCI Sim, 3 days TS 280 / 4409
p5 (M) 12 cycle of 2 days mouse, 2 days TS, 2 days BCI Sim 47 / 541
p6 (M) 9 3 days mouse, 3 days TS, 3 days BCI Sim 46 / 489

Results

Overall evaluation. Figure 6.5 (right) shows the spread of participants’ overall SUS
ratings of the music player in the different modalities. Similar to the lab study, there was a
decrease in the average score from Mouse (72.0 ±14.6 SD) to Two Switch (69.0 ±8.0 SD)
to BCI Simulator (44.5 ±19.0 SD) modes. On average, participants chose 3.2, 1.2 and 0.3
positive words and 0.2, 0.6 and 3.0 negative words to describe the music player in Mouse
mode, Two Switch mode and BCI modes respectively.

For the Mouse mode, hedonic positive words fell into categories describing the aesthetics
(‘clean’, ‘bright’, ‘new’), being ‘creative’ and ‘satisfying’, ‘appealing’ and ‘approachable’.
The most common positive words referring to usability were ‘consistent’, ‘responsive’ and
‘easy to use’. Other words included ‘predictable’ and ‘time-saving’. The words ‘frustrating’
and ‘time-consuming’ were chosen to reflect users’ difficulty in selecting albums using the
binary selection. For Two Switch mode, added positive words included ‘creative’, ‘stim-
ulating’ and ‘fun’ (s6). The positive words used to describe usability were ‘reliable’ and
‘accessible’. The main negative words used to describe the music player in the Two Switch
mode were ‘slow’ (3 out of 5 participants), ‘annoying’ and ‘frustrating’. Finally, for the BCI
Simulator mode positive words were ‘creative’ and ‘impressive’. The most common negative
words were ‘slow’ and ‘frustrating’ (4 out of 6 participants), followed by ‘time-consuming’

161



6 Applications II: Case Study in Developing a Music Player

and ‘inconsistent’. Other words were ‘hard to use’, ‘uncontrollable’, ‘complex’, ‘misleading’
and ‘boring’.

Time spent listening to music. Figure 6.6(b) shows the time spent on using the music
player for each input modality over the allocated days, with reference to the Mouse mode
(taken to be 100%). Results are shown for four participants plus the author/designer. The
general trend was that the level of use of the music player between the Mouse and Two
Switch modes (mean 107.0% ±16.1 SD over four participants) was comparable, while that
of the BCI simulator mode decreased (mean 55% ±29.6 SD). As well as the author, the
participant who had a longer use of the music player and switched between the different
input modalities (p5), did not show a substantial decrease in the use of the music player in
BCI mode.

Usage of playlist selection options. Figures 6.7(b) and 6.8(b) show the time spent
playing music in each playlist option as a proportion of the total time spent playing music,
for each input modality. For both Mouse and Two Switch mode, the Mood selector had the
highest usage in terms of the median estimates (median 74.3%, quartile range 0.0–79.5%
for Mouse mode; med 48.0%, QR 4.3–90.6% for Two Switch mode). For the BCI Simulator
mode, the use of the random selector increased (med 53.5%, QR 42.9–69.6%) while that of
the mood selector decreased (med 22.7%, QR 13.6–34.1%). Interestingly, the use of album
selector was comparable for both Mouse and BCI Simulator mode (med 21.2%, QR 10.0–
26.4% for Mouse; med 18.6%, QR 14.2–28.7% for BCI Sim), but was reduced for Two Switch
mode (med 1.6%, QR 0.7–26.6%).

Due to the small sample size and length of time of the study, conclusions cannot be drawn
and the reasoning behind participants’ choices cannot be made completely clear. Some of the
smaller percentages could be due, for example, to participants simply trying out the playlist
option before deciding that it was suitable for use with the input modality. However, it is
interesting that some participants continued to use, or used the album selection option more
than in other modes. p5 indicated that in some contexts (e.g. where focussed attention was
required), it was easier to invest time selecting an album initially as it would allow one to
play music that was known to be what was needed at the time. This was also the experience
of the author. However, s3 and p6 said that that, while they may have done this if the music
was played reliably, the unpredictability of when the music player would unlock itself meant
that it was not worthwhile to invest the initial time at the beginning.

Interestingly, the album selector was used the least in the Two Switch mode rather than
in the BCI Simulator mode. It is possible that this phenomenon is simply due to sampling
error, as data from only 4 participants is included in this input modality. Certainly, p6
continued to use the album selector 100% of the time in Two Switch mode and only 40%
in BCI Simulator mode. On the other hand, user comments indicated that there might
be a logical reason for not choosing to use the album selector in Two Switch mode. In
the random and mood selection modes, participants liked being able to click ‘shuffle’ easily,
which was slower to do in the Two Switch mode and even slower in the BCI simulator mode.
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It is possible that with the Two Switch mode, selecting ‘shuffle’ often is still perceived as a
less costly transaction than selecting an album. Thus, an interaction between the playlist
selection options and input modalities may be seen to exist. Album selection in Mouse mode
could be somewhat tolerated because it was quick enough to do; in Two Switch mode it was
too slow and not worth the hassle (for some participants), while in extreme loss of control
as in the BCI Simulator mode it was a way of ensuring that a good selection of songs was
chosen. The finding that p6 chose to use the random selector in the Mouse mode but not
in the Two Switch mode would fit into this account: since his tolerance of randomness in
song selection is low relative to other participants, it follows that in the Two Switch mode,
he might seek to eliminate all uncertainty so as to limit interaction with the music player
as much as possible while listening to music.

The order of exposure to the different input modalities appear to have an effect on the
playlist selection options. For example, the moods functions continued to be highly used in
the Two Switch mode where users were either exposed to different modes on more than one
occasion (p5) or the Two Switch mode after BCI Simulator mode (s6). On the other hand,
s3’s usage of the moods playlist selector decreased substantially on exposure to the Two
Switch mode. During the post-study interviews, she indicated that she liked the moods
function in the Mouse and Two Switch modes, and suggested that if she were to use the
Two Switch mode again, taking a slightly longer time to select a mood and to shuffle tracks
would not seem as tedious as it did before. s2 also revealed that while he was using the Two
Switch mode, it had seemed ‘incredibly sluggish, but nothing compared to BCI Simulator
mode’.

Participants revealed different experiences of the playlist options. As in the lab study, all
users found the album selection difficult to use. Nevertheless, participant s2 continued
to express his liking for the binary album selection even after the study: ‘I really liked the
album selection, it was funky. It forced me to think about the albums, what the names were
and stuff. I’m not sure if it’s just ’cos i’m a computing scientist though... just the binary
search was pretty cool. ’Cos it was log(n) complexity so that was good.’ p6 indicated that
he was surprised by how different it was to have the tracks within an album being played in
a random order, as he was usually religious about playing them in the correct order. Most
participants mentioned that they used the random function more as the interaction with
the music player became more time consuming. Finally, the most interesting and diverse
responses regarded the mood selector. On the one extreme, participant p6 did not like it at
all, saying that he did not find it different from random and preferred to select exactly what
he wanted to listen to anyway. On the other extreme, s6 liked the mood selector, saying
that it ‘suits my taste very well’. s2 found that the ‘calm’ mood filtered out songs that that
she did not like, or that were not appropriate for working, but was not entirely convinced
about the choice for some of the other moods (‘I did try some of the others but i wasn’t
quite sure what angry was supposed to mean so...’). In total, 4 out of the 6 participants
expressed a liking for and used the moods function, although some mentioned that in slower
control modes it took too long to select.
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Functionality. Most participants who completed the study expressed that the music player
contained the functions they desired in a music player. Two participants again appreciated
the simplicity and lack of clutter of the music player as compared to iTunes. However, two
mentioned that volume control would have been good to have, one wanted the functionality
to skip tracks without shuffling (a default setting), one wanted the music player to start at
the last place it stopped, and one indicated that the lack of a repeat was frustrating.

Responses to degradation of system control. Participants exhibited several responses
with regard to degradation of system control. Similarly to the lab study, participants found
the Two Switch mode to be rather slow, but upon being exposed to the BCI Simulator
mode, expressed that they should probably have been more tolerant of it on hindsight. s6
expressed that it was ‘annoying at the start because I had to turn the arrow... but at the
end I found it quite manageable and unique.’ It is possible to speculate that after a while,
the rhythm of the rotation and selection required in the Two Switch mode becomes relaxing
and no longer a source of frustration. Relatedly, for both Two Switch and BCI Sim mode,
p5 expressed that it felt like he was being ‘unnecessarily frustrated’: ‘I just thought, “But
i was able to control it easily 2 days ago!”’

In all the comments for the BCI Simulator mode, frustration was also expressed. For
example, s3 wrote, ‘It was extremely frustrating and stressful to be interrupted from work
because the player had changed the settings (paused the music or changed to a different
setting) and to have to then go through the selection process again. On a number of
occasions, I lost patience with re-setting the settings, and resorted to workarounds like
relaunching the player so that I could simply select random play and lock (which meant fewer
attempts [selects] to get the right option selected). I also used the mute on the computer
once or twice when there were songs that were too distracting to work to. Basically, even if
I was sufficiently incapacitated to use a system like this, I think that most of the time, Id
prefer to have someone else choose my music, or just have it playing all the time.’ On the
other hand, when asked if she would use the BCI mode if she was disabled, s6’s response
was ‘No because it would be exhausting if i were disabled. But i think if i were disabled
and i really liked music, i would still work to use it.’

Summary of results

The findings from the longitudinal study largely follow and enhance those of the lab study
showing that individual differences in tolerance and preference for controllability and choice
of music exist. An additional finding is that the biggest source of frustration in the BCI
Simulator mode was that the music player would unlock itself and perform an unintended
action every so often. An interesting observation was that a few users found value in
investing time in selecting the right kind of music as interaction with the music player
became very costly; however, the unpredictability of the system while playing music lessened
the value of doing this and participants either gave up using the system, reduced use, sought
to ‘fight with’ the player or tolerated it (let the music player play anything it wanted). Thus,
the main limitation of the control was the unpredictability caused by the lack of ‘idle’ state.
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The other main issue participants found was that selecting anything (i.e. pausing or skip-
ping track) with the BCI Simulator took far longer than in the Two Switch mode as the
system had to be unlocked before selecting any of the functions. The conclusion that these
additional qualities in the degradation of control had a larger effect on participants’ use of
the system in BCI Simulator mode than the input simply being slower is backed up by the
fact that the time spent using the Two Switch mode was comparable to that of the Mouse
mode, while in most cases the usage of the BCI Simulator mode decreased.

Another problem highlighted by participants was that it was too time-consuming to select
albums. This shows that the mood selector in itself was not adequate for controlling a
music player, highlighting a need for improvement of the album selection mechanism. Still,
there were participants who used and liked the mood function in Mouse mode, however
degrading the control made them switch to using random at some point instead as the
design of the system meant that random was easier to select than a mood. This suggests
that if the mood function was as easily accessible as random, it may have allowed users to
continue selecting mood. Finally, the features volume, repeat and history were highlighted
as necessary functions that were missing from the player.

It is worth noting that results should be taken with caution due to the small sample size and
relatively uncontrolled ordering of the experimental conditions and duration of the exper-
iment for each participant. Nevertheless, the present findings are valuable for the purpose
of making recommendations for design. Firmer conclusions about the specific sources of
frustration, and individual differences in the level of tolerance and preferences regarding
uncertainty in music selection, may be drawn with a more tightly controlled study involving
a larger number of participants.

6.4.4 Various input modalities and settings: case studies of disabled
participants’ use

4 people with varying degrees of disability were asked to evaluate the music player with
various input modalities in different settings. In this section, experiences and user comments
with the prototype study are reported, with a summary and implications for design at the
end of the section. Note that all names have been changed for confidentiality.

Paulo (Moderate disability)

Paulo is a 22 year old male from Italy who was involved in an accident a few years ago. As
a result, he is unable to grasp objects, but uses a Mouse and keyboard with both hands and
gets around in a manual controlled wheelchair. He is very bright and motivated as shown
by his latest project to program a robot. Paulo was introduced to the music player using
both mouse and single switch functionality, but preferred to use a mouse. The Desirability
Tk was used to engage Paulo in expressing his initial impressions of the music player.
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Current music listening habits and contexts. Paulo indicated that he listens to music
in two contexts: when he is focusing on work, and at all other times. He indicated differences
in how he usually listens to music: When focusing on work, he selects an album to listen to
most of the time, while all other times, he mostly uses smart playlists.

Initial impressions of the music player. The adjectives that Paulo selected to describe
the music player were ‘Predictable’, meaning that the control input of the single switch was
controllable, ‘Accessible’, and ‘Simple’ meaning that in general the system was understand-
able, easy to use and intuitive. However, he said that he would probably not use the music
player in every day life as it is too difficult to select an album to listen to (selected Somewhat
Disagree, on a scale of 1-5, 1 being Strongly Disagree and 5 being Strongly Agree).

Fred (Moderate disability)

Fred is a 52 year old composer from Switzerland who has Guillain-Barr syndrome and
was undergoing physiotherapy at the time of study. Fred is able to use his hands, but
not to grasp objects, and uses a manually controlled wheelchair to move around. The
author invited him to evaluate the music player after a weekly physiotherapy session at the
rehabilitation hospital.

Current music listening habits and contexts. Fred indicated that he only listens to
classical music or French songs, and usually enjoys music during dinner time either through
CDs or standard music players on a desktop computer. Since sound quality is of utmost
importance to him, his digital music collection contains only .wav files. He is accustomed
to choosing specific songs to play, and sometimes creates playlists for friends. In addressing
the kind of music he listens to, he indicated that music that uses a single instrument is the
best as it is more personal and intricate, while if there is company, Mozart or some other
symphony is selected as the music is not as technical.

Initial impressions of the music player. Upon being introduced to the music player
and using it with a mouse, Fred indicated that it was cumbersome to use the album selector,
and suggested that it could be interesting if all the music could be put on a list and rotate
around the wheel; the user could click when the desired artist or album passed the selector.
This would be equivalent of a scanning system with an original visualisation. Fred was
also interested in the moods selector, but expressed a desire to have more precision or
customisation than the music player would allow. He wanted to have a hierarchy of moods,
where you could choose a mood (for example, ‘calm’), followed by an artist or style (e.g.
‘Mozart’, or ‘classical’). On explaining that this could be done with the more complex
feature selection system, he commented ‘This is nice.’ Lastly, Fred indicated that he would
like to have the functionality of building up his own library of moods manually by going
through the list of music and dropping it into self-defined categories such as ‘happy’ or
‘angry’.
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Brenda (Severe disability)

Brenda is an Italian lady who has cerebral palsy and uses an array of switches as input into a
computer. She is able to communicate in English verbally. She obtained a University degree
in music, and is very experienced with a variety of ATs. The author visited Brenda at her
home with an AT professional. Following a brief interview about her current music listening
habits, and an introduction to the music player, the software was successfully installed onto
her desktop computer. Brenda used a single switch to control the music player, as it was
the easiest means for her to provide input into a computer. She was able to complete all
the tasks using this input mode.

Current music listening habits and contexts. Brenda identified her contexts of lis-
tening to music as ‘Working’, ‘Having friends over’, ‘Relaxing’ and ‘When I want to sing
very loudly’. In all contexts, she indicated that she listens to music on Random 90% of the
time, and for the other 10% she chooses music by her favourite artists or singers. She often
creates playlists of music by choosing songs to play.

Initial impressions of the music player. Brenda indicated a strong interest in the music
player, saying that she appreciated the simplicity of the mood features and the interface,
and she thought that the REx paradigm was very innovative by current AT standards. The
words she used to describe the music player, as selected from the Desirability Tk, were that
it is ‘Time-saving’ as it takes her less time to choose music to play, ‘Innovative’, ‘Attractive’,
‘Energetic’ or ‘Exciting’, and ‘High Quality’. She indicated that she would use the mood-
based playlist selection method a lot for her own pleasure after the application had been
installed on her own computer, and would also try to become more comfortable with using
the album selection method. Brenda was happy that she had the ability to fine-tune the
parameters of the mood-based playlist selection algorithm, and described the ability to
simply pick a mood to obtain a particular type of music as ‘time saving’.

James (Moderate disability)

One participant downloaded and installed the music player in his home computer and was
asked to evaluate the music player in mouse and single switch mode. James is almost
tetraplegic but able to move his hands and use a mouse and keyboard. As he is lives in
Northern Ireland, we communicated through email. The procedure was similar to that
carried out with non-disabled participants in the longitudinal study in the previous section.
Prior to using the music player, James was asked to fill in the initial questionnaire about
his music listening habits, and to identify his contexts of listening to music. After using the
music player for a few days, he was asked to estimate his use of the music player, and to fill
in a post-study questionnaire.

Current music listening habits and contexts. James indicated that he listens to music
in three contexts: ‘1 is late at night in bed, I have a music system in my bedroom and leave
the timer switch set so that I can drift off to sleep while listening to a CD or sometimes
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the radio; 2 is when I am doing my devotions (daily spell of bible study and prayer), I have
praise/worship music on while I do that; and 3 is the most common, when I have music on
to listen to while I’m doing something else (usually surfing the web or reading).’

Evaluation of the music player. Unfortunately, the system could not be set up such
that James could listen to his own music on the music player, or to obtain any usage data
due to technical reasons. Thus, he downloaded and used the sample set of music that was
used for the lab and demo sessions, and only the subjective evaluations are reported here.

In terms of contexts, James found that he could not listen to music using the current music
player for the contexts ‘drifting off to sleep’, because the music player lacked a timer to
turn itself off after he fell asleep, and ‘doing my devotions’ because ‘the selection of music
didn’t really include anything suitable’. Thus, he only used the music player in the context
‘while doing something else’. For the Desirability Tk, the words ‘appealing’, ‘bright’, ‘fresh’
and ‘easy to use’ were selected, with the comment that they were ‘chosen to reflect highly
positive experience of using music player’.

With regard to the use of different playlist selection options, James estimated using the
random selector 20% of the time, mood 35% of the time, and album 45% of the time. He
also said that he liked the binary selection of albums, and that in the end this was his
preferred option as ‘takes less time/effort get the music I want playing this way’, ‘i like
being able to control exactly what was playing’, and ‘its what im most used to’ (pre-defined
options). He also mentioned that the music player lacked a ‘repeat’ function that would
allow him to replay a whole album or song. He preferred the Mouse mode to single switch,
as the switch mode ‘took too long and was frustrating’ while the mouse mode was ‘quick
and convenient’.

Summary of results

In terms of overall impressions, the 3 participants who chose words from the Desirability Tk
selected no negative words and an average of 4.6 positive words to describe their experience
with the music player. Some participants were more enthusiastic about the moods func-
tionality than others; at least 3 of the 4 participants expressed an interest in using moods
in some way. One participant was also excited at the prospect of engaging with the mood
technology and fine-tuning the parameters to suit her needs. It was clear that participants
also wanted the ability to choose individual albums and tracks, such that one participant
indicated that he would not use the music player in his own time because it was difficult
to select an album, relative to his current solutions. The usability of the album selection
was a problem for 2 of the participants; however one said that he liked the binary selection.
The repeat function was identified as a missing function of the music player.
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6.4.5 BCI study

Methodology

6 non-disabled and 4 disabled (all male) participants tested and evaluated the music player
with real BCI. After setting up the BCI cap, the standard calibration tasks were carried
out in order to gauge participants’ performance. To evaluate the music player, they were
given several tasks to complete, followed by a post-study questionnaire to explore how
users perceived the interface. One disabled participant also evaluated the player using
the Desirability Tk. The results focus on participants’ preference for the different playlist
selection methods; results from the three disabled participants are reported as case studies.

Results

Able-bodied participants. Out of the able-bodied participants, most indicated that they
would mainly choose to use the mood (3 out of 6 participants) or random (2 participants)
function to select music if they were using the BCI music player. From a list of pre-defined
options, the reasons selected for participants’ choice included that this allowed them to
take less time and effort to select music, and that they would enjoy listening to music they
wouldn’t normally listen to. The remaining participant indicated that he would choose to
use the album selection as he wanted to be able to explore and find out exactly what was
in the music player collection, and he liked being able to control exactly what was being
played.

Participant L00 (severe disability). L00 is a music enthusiast who has paraplegia and
a limited range of arm movement and grasping ability. He reported having around 3500
songs and 120 albums in his digital music collection, and usually creates playlists by genre,
random selection, or shuffling albums. Prior to the BCI experiment, L00 was introduced
to the music player using a single switch device. In answer to the BCI mode, he preferred
to ‘select a mood and then let the system select the songs’, as he would enjoy listening to
music different from what he was used to.

Participant L01 (major disability). L01 is tetraplegic and does not currently have
access to music on his own. Occasionally, he requests music to play but usually his wife
chooses the music. He indicated that before the accident, he would choose CDs to play in
the car, but currently he has no way of doing so. In any event, in his current lifestyle, L01
feels that he does not have time to think about the issue of being able to play music and
until the user study had not really thought about having a music player; thus a music player
would be a ‘nice to have’ feature of his life rather than an essential part.

During the music browser testing, end user L01 became rather excited that he might be
able to select a particular artist, Rammstein. However, as this particular artist was not in
the sample music collection, he settled for selecting an album by the band AC/DC. The
sequence L01 decided on his own was to select the album, play, lock the music player, listen
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to the track for some time, unlock the player, select ‘shuffle’ to change tracks and lock the
music player again. On completing this sequence of actions with 100% accuracy (13/13
selections in total), he appeared to be delighted and commented that being able to do this
was ‘cheering [him] up more than the other BCI trials’.

From the Desirability Tk, L01 selected the terms ‘Easy to use/ Simple’ (‘When I use it for
some time, it’s easy for me’), ‘Desirable’ (‘From so many albums I can quickly choose [the one
I want]’), and ‘Advanced’ (‘Cutting edge, state of the art technology future oriented’). In
the post study questionnaire, L01 indicated that he would prefer to use the album selection
as he preferred to select the exact album or song he wanted, and that it was what he was
most used to. Finally, in terms of functionality L01 pointed out that the music player lacked
a volume control function.

Participant L02 (Paulo from previous section). L02 had no strong preference for any
individual playlist selection method, indicating that he would choose to use a combination
of all 3 selection methods.

Participant L03 (severe disability). L03 is an 18 year old who has muscular dystrophy
(Duchenne) and is unable to perform the most common activities of daily living without the
help of one of his caregivers. He is able to speak and has residual movement of the hands
and fingers. He is able to move around on a joystick-controlled power wheelchair. Although
he uses a desktop PC via a trackball for communication with his sisters via Facebook and
Skype, and uses the iPhone to manage domotic solutions within his home environment, he
does not regularly use a music player on these devices. As such, although he was able to use
the music player with a high level of accuracy, he did not have a strong opinion preference
for any of the music player options, abstaining from answering the question on which of the
three playlist selection methods he would prefer to use. However, he did rank the options
in a later question (album=1, moods=2, random=3).

Summary of results

Of the two participants who were moderately disabled, one had no particular preference for
a particular playlist selection method, and the other would use the moods functionality. The
participant with severe disability preferred the album selector when pressed for a vote, and
the participant with major disability preferred the album selector as he was used to choosing
his own music, and liked being able to choose exactly what was playing. In contrast, only
one able-bodied participant indicated that he would prefer to use the album selection, while
the others preferred using the random and moods functions. Volume control was highlighted
by one participant as being a missing feature of control.
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6.5 Summary of findings and implications for design

In total, feedback from 15 non-disabled and 22 disabled participants was captured in six
settings as described in previous sections. The goal was to investigate how people might
choose to interact with a music player given the limited constraints of a BCI, in order to
provide recommendations for how to design a MI-BCI-controlled music player for someone
with LiS. In this section, the results are combined and presented in terms of the aims set
out at the beginning of the prototype study (Section 6.4).

Overall use of music player as control degrades. The controllability of a software
system depends on the user’s physical ability, the choice of input modality and the design
of the software application. Physical ability limits the choice of input modalities available,
while each input modality has its particular constraints. In the case MI-BCI control, the
user is restricted to two inputs, the time taken to select an interface object is very slow,
and there is likely to be a degree of error in the interface. The prototype developed in
Section 6.4 allowed for a variety of input modalities with which to engage both able-bodied
and disabled participants, and an attempt was made to simulate disability by degrading
user control using two-switch input and an online BCI simulator. It is worth noting that
the music player forced users to use a binary selection to select albums, and as such this
can be seen as an initial restriction of control, as it would generally take a user more time
to select an album using a standard music player application if the mouse and keyboard are
used.

The online simulation studies revealed two continuums which can be used to describe the
behaviours resulting in degradation of control. The first defines the control strategy one
employs to use the system. Users might choose to simply tolerate the behaviour of the
system or change strategies or the way in which they use it (e.g. changing the way they
select music). The second relates to the time spent using the system: users might continue
to use the system as much as they did before, reduce the time spent using the system, or stop
using it altogether. It could be seen that individual differences exist in terms of the degree
of tolerance people have, which influences their behaviour, continued use or acceptance
of technology as the level of control degrades. Firstly, there was individual variation in
when people stopped or would stop using the music player. Some participants would not
use the music player at all, for some the threshold was the Mouse or Two Switch mode,
others continued to use the player in BCI Simulator mode for a reduced period of time
and still others would continue or continued to use the player for the same length of time
as the baseline. This reflects the variation in disabled participants’ responses to the video
prototypes, as well as their responses to the music player prototype as controlled using
different input modalities.

Feedback from non-disabled participants in the longitudinal study revealed that, in BCI
Simulator mode, the biggest source of frustration was the uncertainty of when the music
player would unlock itself and do something random. This was pre-empted as disabled
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participants were asked to consider how this might affect the way they controlled the music
player during the video prototype study. It was seen that some participants would not use
a music player that started and stopped randomly, others would only create playlists then
take the BCI cap off, and still others would tolerate the randomness as long as it did not
occur too often. Because of the rather strong responses from able-bodied participants in
response to this, the recommendation is to eliminate the lack of idle state control as far as
possible. This might be done, for example, by supplementing the BCI with a single switch
device which is meant to be used very occasionally. Failing this, the end user should be
given a choice as to how they wish to address the issue. It should be noted that for the
participant L01 who participated in the BCI study, his level of BCI control was far better
than in the BCI Simulator experienced by healthy users, where the control settings were
intentionally set for the system to unlock every 10 or 15 minutes. Thus, it is possible that
the locking and unlocking function implemented in the current prototype would be sufficient
for some BCI users.

Preference for playlist selection methods. The second purpose of the user studies was
to establish how participants would wish to select their music with an increasing degradation
of control. Playlist selection methods were selected where there would be a trade-off between
ease (speed) of selection and precision of music. It was expected that with decreasing control,
participants’ choice of music selection would become progressively less precise in order to
select music more quickly.

The first finding is that there is individual variation in users’ baseline preference for impre-
cision in music selection. The way in which music is selected, and the way this changes as
control degrades, depends on a variety of factors such as personal preference, habits, current
context, mood, availability of other options, desire to listen to music, and the tolerance for
imprecision and uncertainty in control. In particular, the context appeared to affect how
participants chose to select music: in situations where specific [types of] music needed to be
played, behaviours emerge where either the tolerance for playing music in degraded control
circumstances was low or tolerance for selecting a specific track was high.

In all user groups, participants who were interested in or enthusiastic about the mood
playing functionality were observed. The moods functionality itself is interesting since it can
be tailored either for simplicity or complexity. Some participants appreciated the simplicity
of selections, while others such as Brenda expressed a desire to invest time in fine-tuning
the mood parameters. She was also enthusiastic about the principle of fine-tuning the
parameters in order to be able to select a mood quickly in the music player. However, the
eventual uptake of the mood (intelligent playlist generation) playlist selector depended on
whether people thought the system filtered songs according to their mental model of the
selected mood or genre. There were those who did not like the mood functionality but were
willing to accept it as a ‘best resort’ option in situations where there would be a decrease in
communication rate, while others would simply prefer to randomly shuffle their music. In
the longitudinal study, there were also two participants for whom the mood selector seemed
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to grow on with actual usage.

Again, in all studies, subsets of participants expressed a desire to be able to select individual
tracks or albums, at least in some contexts. Some of the strongest reactions arose with regard
to being able to select specific songs to play: three participants in the video prototyping
study expressed strong opinions of wanting to select precise songs, the composer in the
prototype study wanted to be able to scan through tracks, and the one BCI participant who
had a major disability was very happy to be able to select an album of his choosing. These
reactions were somewhat confirmed in the studies with the online simulator where, with
diminishing levels of control, there were people who would still use the album selection;
conversely, others stopped using the music player because they were not able to easily
select specific songs. Thus, the results from the online simulations somewhat strengthened
the findings from disabled users that album and song selection are an important goal for
listeners of music, which may or may not be replaceable with other less precise methods of
playing music depending on a given user.

A logical conclusion is that a music enthusiast who finds him or herself in a state of severe
disability might well wish to invest time in selecting a particular song, and even to do other
more complex and time-consuming tasks such as create individual playlists. This makes
sense if one considers that regaining a feeling of control provides a sense of empowerment to
the user, and is one of the factors in a person’s choice to adopt an assistive technology (Pape
et al., 2002). In the long run, it is possible that a given user would switch to intelligent
playlists or random shuffle, and thus it is beneficial to develop and provide these options.
However, as it was shown that end users are likely at least initially to be able to choose
their own desired songs, it is recommended that the album and track selection mechanism
is further developed. Customisation based on context may also be desirable, and algorithms
or artificial intelligence techniques to enable users to quickly and easily identify their desired
music. Ways of allowing users to easily explore or browse a music collection should also
be explored, as disabled participants also mentioned the desire to be able to scan through
albums and tracks linearly; it is recommended that as much as possible, they enable a person
to feel in control of the browsing.

Functionality. In general, participants appreciated the simplicity of the music player
prototype. Ease of use was repeatedly identified by participants as the reason why they
liked or did not like their current solutions, and people stopped using the music player
when it became difficult to use. Two functions that were identified by different groups
in the prototype study as being missing were volume control and repeat. Thus, further
developments of a minimalistic music player should at least seek to provide these options.
Additional features such as creating playlists and having a stored history are also potential
areas of future exploration. To minimise unnecessary cost to the user of having extraneous
functions which they might never use, the features can be customised for each individual.
Customisation is a usual part of applying an assistive solution (Sutcliffe et al., 2003).
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6.6 General Discussion

The UCD process described in Chapter 2 was used to design a music player intended for
use with a BCI by persons with LiS. In this section, reflections on several aspects of the
process in general, and of the use of online simulations, is discussed.

Reflections on the use of video prototyping and early engagement with disabled
users. User involvement was employed in four stages: a user requirements capture ques-
tionnaire, video prototyping, prototype evaluation without BCI, and prototype evaluation
with BCI. Engaging with target end users at the beginning of the design process, as early on
as possible, has been shown to greatly benefit the final product as the findings can uncover
previously unthought-of needs and perspectives, substantially influencing the direction of
the design (e.g. Buxton (2007)). This is particularly true for developing for persons with
disabilities as the gap between the designer and end user’s perspective is larger still (Dong
et al., 2005). The current work attempted to add to this body of literature by eliciting
feedback from disabled participants who may not have the level of physical disability as the
intended target user, in a design process for an application using an unconventional input
which they have not had previous exposure to.

Low-fidelity video prototypes were used to simulate potential behaviours of a BCI applica-
tion, and participants were asked to provide opinions on how they might wish to use such a
system. This engaged participants quickly at a low cost to all parties involved, and provided
access to users’ initial reactions to a novel interactive system without having to involve them
in rigorous and potentially tiring usability testing. Although participants did not actively
engage (interact) with the videos, simply demonstrating the limitations of BCI provided
valuable insights into end users’ expectations and requirements. The results led to steering
the direction and focus of the music player towards empowering a user to precisely select
their choice of music rather than on other potentially worthwhile goals such as engaging
users in social interaction through music. The exercise may be considered a success, as it was
demonstrated that the final prototype was well-received by severely disabled participants
in later stages of development.

The design process sought to involve a larger number of disabled participants at the begin-
ning of the study and at the end where evaluation of the final prototype could be assessed.
This aimed to reduce the costs of involving disabled participants in long and tedious tests
to establish the usability of the system. The implicit reasoning was that disabled end users’
perspectives, needs and requirements would be somewhat different from that of non-disabled
people. As such, the user studies were not set up in such a way that participant preferences
could be compared, and in any case the sample sizes in each group were too small to make
any statistical comparisons. Thus, one cannot really conclude that different conclusions
would be drawn from having able-bodied users carrying out the video prototyping exercise
rather than disabled end users. On the other hand, the choice of preference for the three
playlist selection options in all studies with able-bodied users was skewed towards random

174



6.6 General Discussion

or moods in the BCI [simulator] modes, and none of the participants were overly thrilled
with the album selection (although one did mention that he liked the binary selection tree).
Conversely, the opinions of the most severely disabled participants leaned strongly towards
the desire for control at the expense of time taken. It is therefore not unreasonable to spec-
ulate that if only healthy participants had been consulted at the beginning of the study,
that the desire for precise selection of music would not have been picked up as clearly. This
lends credence to the methodology of consulting with disabled users at the beginning of the
design process.

Reflections on the use of the online BCI simulator for usability testing. The
intention of using the online BCI simulator was to evaluate a BCI application without having
to incur the costs of actually using a BCI. This allowed for involving a larger number of users
in a shorter period of time for usability testing, and to deploy the system in participants’
own contexts in the longitudinal study. The value of such an activity was two-fold: firstly,
the main usability issues with regard to the application, such as some users’ difficulties in
selecting albums, and the main sources of frustration, could be uncovered using the online
simulator. Secondly, both qualitative and quantitative changes in use of the application
were observed when the level of control degraded past a user-specified threshold of tolerance.
This enables the prediction of the range of behaviours that might occur in a real application,
despite the limitations of only carrying out BCI studies in the lab. However, validation of
user studies using the online simulator is required to find out to what extent the simulator
is an adequate representation of actual BCI.

Going by participants’ usage of the music player in BCI Simulator mode during the lon-
gitudinal study and stated preferences in the BCI study, there was a slight difference in
the distribution of user preferences for the playlist methods: 2, 3 and 1 participants pre-
ferred the random, moods and album selectors for the real BCI mode respectively, and 4
and 2 participants preferred the random and mood functions in the BCI simulator mode.
For the small sample sizes, the results are certainly comparable, and the conclusion that
user preferences in the BCI simulator mode were more skewed towards random than the
BCI mode is not possible to make. However, as people who participated in real BCI trials
indicated, there was some inclination to believe that participants’ performance in real BCI
at least felt, if not was, subjectively better than for the real BCI. In this case, the skewed
distribution of the simulator preferences may reflect the hypothesis that diminished control
correlates with a preference for less precision. On the other hand, the discrepancy could
have occurred because of the valid experience of the control characteristics in the longitu-
dinal study, which would not have been evident with a real BCI. Thus, this highlights the
importance of building simulators that adequately represent the true control characteristics
of the BCI.

Reflections on individual differences. In a paper evaluating long term user experience,
Kujala et al. (2011) states that ‘User experience is personal–different users had diverg-
ing reactions even to the same [product]’. In the case of music listening using a MI-BCI,
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users showed similarities and differences in their choices; however the reasoning behind their
choices was sometimes not the same. For example, enjoyment could be due to the BCI inter-
face being ‘challenging, like a game’, or that ‘I wanted to explore the music collection’. The
origin of individual differences common to both disabled and non-disabled people includes
musical preferences and prior expectations, context of music use and openness to new tech-
nology or experiences. User tolerance to control adds another dimension to the list. Apart
from one participant, all the participants in the longitudinal BCI simulator study (6 out
of 6) and the BCI study (5 out of 6) preferred random or mood as their method of choice.
Conversely, two out of four of the disabled participants in the BCI study would prefer the
album selection, one would use a combination and another would have chosen the moods
functionality.

It is worth emphasising that prior to the video prototyping study, it had been expected
that disabled participants would be rather more interested in the intelligent smart playlist
functionality. Although some users were very enthusiastic about the technology, the strong
sense of a desire for achieving precision in music selection was surprising. However, it is
known that a sense of control is important for people who have acquired physical disabilities,
and that this influences their acceptance of [assistive] technology along with a myriad other
personal factors (Pape et al. (2002), Scherer et al. (2005)). On reflecting that the appeal of
randomly shuffling one’s music is the surprise, unpredictability, or serendipity of not knowing
exactly what is coming up next (Quiones, 2007), light is shed on a reason as to why someone
with a physical disability might prefer to exert precise control at the cost of extra time: the
thought of voluntarily relinquishing control is unappealing. The suggestion participants
gave of scanning through one’s music linearly is an extension of this: although browsing in
this way may take a long time and enables one to find unexpected songs (Cunningham et al.,
2004), this is different from simply randomising the music as here, the user is in control of
the actual scanning.

Relatedly, people with severe disabilities are not constrained by the need to interact with
a machine quickly with a given input modality (Birbaumer, 2006), but define their own
sense of acceptable time to achieve tasks (Pape et al., 2002). It is likely that able-bodied
participants’ tolerance for a low communication rate and motivation to exert control cannot
match a severely disabled user, and thus the threshold at which an able-bodied user either
gives up playing music or gives up precision due to loss of input control is lower than that
of an end user. One implication of this is that research into how to browse, interact with
and navigate a large music collection easily with BCI control is a promising direction for
future work: because the onset of fatigue can be fast, it makes sense to support the user
in achieving their goals by increasing their rate of communication as far as possible even
though they may not inherently mind exerting more effort.

Another factor which may influence preference is the desire for self-identification: a ‘pre-
served self-image’ (Pape et al., 2002). For example, less severely disabled people might view
the simplification of music selection as being patronising or ‘dumbing down’ the interface,
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and might reject the interface for that reason. BCIs studies indicate that the level of mo-
tivation to use a BCI can be significantly higher in participants with a significant level of
physical disability than in people with less severe disabilities (Nijboer et al., 2010). Com-
bining the differences in inherent preferences for control, musical tastes and physical ability
means that for people with LiS, the range of preferences is likely to be as diverse as was
experienced in the sample of healthy and disabled users.

Reflections on the overall process. It should be noted that the process of design is
not linear, but involves iteratively developing and testing the system. Within this process,
much of the iteration was done with healthy participants using both the simulator and real
BCI, and with the author/designer trying out different configurations and exploring the
system. For example, an early prototype used a scanning system which never reached the
real BCI testing stage because through use of the simulator it was found not to provide a
very good user experience. The final prototype described in this chapter can be thought
to be a version which incorporates much of the functionality that people would desire, ripe
for being fed into the next iteration of development where features are refined and other
important ones added in.

To summarise, each user study had its own benefits and limitations. The requirements
questionnaire allowed the identification of the expressed needs and goals of participants, but
not to assess how participants might choose to control the system under BCI constraints.
The video prototypes engaged disabled users for this purpose, but the implications for design
could not be taken to be conclusive as it did not provide a means of allowing them to interact
with the system. The question as to what users might actually choose to do in situations of
reduced input control could be answered through the lab and longitudinal user studies with
able-bodied users, but this user group was plainly the furthest away from the target user
group. Again, asking disabled participants to evaluate the prototype using input modalities
they were comfortable with was valuable: it allowed us to see what was important to users
and to assess the music player as an actual application. However, the limitations were that
most of the evaluations were only carried out in the lab, allowing only brief feedback, that
participants with less severe disabilities might not appreciate the need for slower inputs, and
that the limitations of BCI control could not be conveyed easily. Finally, evaluations with
BCI, while clearly being the most accessible and relevant to the target user group, were the
most costly and did not allow for a long term evaluation. We were also not able to test the
system with an actual person with LiS.

Thus, by integrating the different perspectives afforded by the mixed-users, mixed-methods
approach, it was possible to establish the range of preferences and behaviours that might
be observed for a given target end user. This allowed the synthesis of a clear set of design
recommendations for development of an application that one can be fairly confident would
appeal to an LiS end user with a prior history of listening to music.
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6.7 Conclusions

This chapter demonstrated the use of online simulations to design and develop a MI-BCI con-
trolled music player intended for use by a person with LiS. Video prototypes were presented
to disabled participants to find out how they would wish to control and select music, and
non-disabled participants used the BCI Simulator from Chapter 4 to control a prototype in
a lab session and a longitudinal session. Results from the simulation studies were combined
with those from the initial interviews presented to disabled participants, prototype studies
with disabled and able-bodied participants using BCI and other input modalities. Since
there was a small number of participants in each group, statistical comparisons could not
be made between groups but observed behaviours and subjective feedback from participants
could be identified and used to develop guidelines for design.

The studies provide the first set of evidence demonstrating the value of using online simu-
lations to reduce the cost of BCI testing with end users. The video prototype study set out
to explore how participants would choose to select music with a degraded level of control as
presented with a BCI. Although it was expected that participants would be excited about
exploring new functionality with automatic playlists, and that this would be well received
if the potentially poor control of BCI was demonstrated, there were those who expressly
stated that it was important for them to be able to choose their own songs to play. That
there is much value in this was shown when a participant with a major disability expressed
delight in being able to select an album of his choosing using BCI control.

Although there can be no replacement for end user input especially while gathering the
initial requirements and evaluation of a final prototype, this chapter also showed that the
identification of major usability issues and insight into individual differences can be gained
through online simulation studies with able-bodied users. In particular, the longitudinal
studies allowed the break down of what aspects of control are particularly important or
frustrating, which would have been difficult and costly to obtain with real BCI. The combi-
nation of results from a variety of personalities and level of physical ability naturally lead to
sound conclusions about the most important features and functions that should be consid-
ered in the final design. Customisability is paramount for design: for many design decisions
there is no one-size-fits-all, but the best solution is one that provides the best experience
for an individual user (Scherer et al., 2005).
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7.1 Introduction

Brain-Computer Interfaces (BCIs) have the potential to enhance the quality of life of people
living with Locked-in Syndrome (LiS) by improving their ability to communicate and have
control over their environment. Until recently, the field of BCI research has been dominated
by the technical concerns of achieving an acceptable rate of communication with BCIs. In
transferring systems from the laboratory to end users, a number of challenges arise: designers
will likely not have easy access to individuals, there are a myriad of individual differences
which means systems must be customised for each individual, and carrying out user studies
with BCI is costly. This thesis has presented a range of simulation techniques and tools
which seek to reduce costs and speed up design and development of BCI applications.

Although some simulation tools and techniques have been used in BCI research, a discussion
on the various techniques that are available, and their potential use in design and devel-
opment, has not been published. This thesis has thus aimed to identify and consolidate
potential techniques which can be used. In chapter 2 a user-centred design (UCD) process
was described, showing the relevant parts of the process where different techniques can po-
tentially be used to reduce costs or otherwise contribute to design and development. The
work focuses specifically on BCIs driven by the motor-imagery (MI) paradigm. Two threads
that have run through the thesis are offline and online simulations, and the findings from
these are discussed separately.

7.2 Summary of research contributions

7.2.1 Offline simulation

Use of task times to predict usability and performance. BCI performance is typically
reported in terms of abstract measures such as the theoretical bit rate or the information
transfer rate. In Chapter 3, task completion time was introduced as a metric for comparing
user interfaces in simulation studies. In particular, it was shown that a lower expected time
does not necessarily correspond to a narrower prediction interval. This may be important
as users may be more prone to remembering the longest task times, which could negatively
affect the user experience of an interface which has a longer tail in the distribution of task
times yet while having lower expected times. Simulation is thus shown to be a useful tool
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for estimating task performance.

Trade-off between speed and accuracy in a binary selection task. Chapter 3 also
investigated the potential benefit of a speed-accuracy trade off in a binary selection task.
The effect of selection accuracy (proportion of correct trials) and time-to-selection (time
to make one binary decision, TTS) on overall task time was explored through a simulation
study. It was shown that the overall time taken to achieve a task for a low selection accuracy
can be made comparable to, or even improve on, a higher selection accuracy by decreasing
the TTS. For example, a task can be achieved more quickly for a user model with a selection
accuracy of 0.7 and 1s TTS than a model with a selection accuracy of 0.8 and 4s TTS. One
implication is that, if by increasing the TTS to accumulate evidence of the user’s intent,
only a small improvement on the selection accuracy can be made, it might not benefit the
overall task performance.

Development of simulation models. The choice of abstraction level of a model is influ-
enced by the purpose of the simulation. Two levels of modelling were demonstrated in this
thesis: firstly, a simple user model represented by selection accuracy and time-to-selection
was used for discrete binary simulations in Chapter 3. Simulating task performance using a
combination of the two parameters as input into a finite state machine representation of an
interface has not previously been investigated in the BCI literature. Chapter 4 described the
development of a simulator which models the low-level characteristics of BCI. This was the
first attempt in the literature to simulate the classifier output of a MI-BCI. Two methods
of simulating the classifier output were described with promising results, and it was shown
that a data-driven model based on modelling the frequency content of the signals provided
a slightly better fit to the data than a generative Markov Chain model.

Use of offline simulation to investigate a novel selection mechanism. Chapter
5 reports a simulation experiment that simulates the performance of individual users in a
novel selection mechanism using data from standard binary calibration trials. It was shown
that different models can give rise to a range of possible user behaviours and performances,
which could be useful for an initial analysis of a novel paradigm. In controlling the REx
selection mechanism, a user’s selection accuracy may not be uniform across targets in the
wheel. It was found that to a large extent, the individual models simulated a range of
behaviours such that collectively they were able to capture the selection accuracy for each
target. However, it may be necessary to extend the initial calibration data collected, if it is
even possible to make accurate predictions from the simulation models.

Comparison of simulation predictions with real data. Although numerical and ana-
lytical predictions of user performance based on the theoretical selection accuracy have been
described in the literature, there have been no publications comparing simulated and actual
task performance of a MI-BCI for individual users. In Chapter 3, simulations of task times
from a previous session were used to provide predictions of time-to-task for given partici-
pants. The results for six participants indicate that this is feasible, as the expected value of
the time-to-task and number of selections was within an acceptable range, and the metrics
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fell within the simulation prediction intervals. In Chapter 5, it was shown that ensemble
modelling or averaging of the predictions from different models better predicts the overall
selection accuracy and time-to-selection of single trials in a novel selection mechanism.

7.2.2 Online Simulation

Development and evaluation of an online BCI simulator. The low-level simulator
in Chapter 4 was intended to simulate the control characteristics of a MI-BCI. Different
validation techniques that could be used to evaluate the simulator were discussed. An
evaluation technique, the Turing test, was applied to provide preliminary validation of the
simulator. Preliminary evidence was found that participants could distinguish between a
‘poor’ simulator and real BCI, but not real BCI and a ‘good’, generic simulator.

Use of video prototyping to engage disabled end users in application design.
Again, the demonstration of the use of video prototyping to simulate the control of a MI-
BCI is a novel contribution to BCI literature. Participants were shown different options they
would choose under situations of uncertainty in control of a music player, and an attempt
was made to uncover their underlying requirements. This was used to drive the subsequent
design of the application forward, and evaluations with disabled participants at the BCI
evaluation stage proved the design decisions to be a step in the right direction.

Use of the online simulator for development and debugging. The online simula-
tor was used extensively in the development of the application and selection mechanism
described in Chapters 5 and 6. Because the simulator’s outputs are the same as that of a
real BCI, it was possible to uncover usability and system issues that would not otherwise
have been found until the real BCI trials. This has also been demonstrated in Boland et al.
(2011), in the context of a chess application controlled with a visual ERP-based BCI. Al-
though not all the issues can be uncovered with a simulator as there will be BCI-specific
considerations, such as how difficult it is to actually produce the mental states and how
this affects control of the BCI, some usability issues with regard to control are experienced.
Interestingly, it was also possible to identify a potential control strategy for actual BCI
using the BCI simulator, although the usefulness of this in real BCI control needs to be
validated.

Use of the online simulator as an experience prototype. Chapter 6 also used the
online simulator to elicit able-bodied participants’ responses to simulated disability. It was
shown that the uncertainty in control of the simulator induced frustration beyond simply
having a slower input as with an ‘intermediate’ simulator. User tolerance was seen to differ
between participants: one commented that she wouldn’t use the BCI control while another
said that she would work to use it if she had to. A longitudinal study also showed that
participants vary in their behavioural responses to degradation of control in the context
of playing music, and enabled the identification of the main sources of frustration with
the application that arose from the lack of control. However, it is not clear that these
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experiences would translate to a LiS user using an actual BCI to control their music.

7.2.3 Other contributions

Development of a novel BCI selection mechanism. Although the Hex-O-Spell devel-
oped by Williamson et al. (2009) is widely cited in BCI literature as a successful application
for BCI, no studies on people’s ability to use the actual selection mechanism have thus far
been reported in the literature. The work in this thesis showed that a generalisation of the
Hex-O-Spell, the Rotate-Extend introduced in Chapters 5 and 6, could be used by both
able-bodied and disabled participants. The selection mechanism has the advantage that the
user can select one out of several items in a single trial, and that it potentially creates a
better user experience as the user has more control over the pace of interaction compared to
a binary paradigm. User performance for the REx mechanism is best if there is a user bias
such that the classifier output naturally leans towards one MI class. On the other hand, it
may be difficult for a person with good binary performance to use the system, such as was
shown for two users in the experiment in Chapter 5.

Potential link between disabled users’ desire for control and preference for music
selection. Although there is no way to infer a statistical difference in the music selection
preferences of people with and without physical disabilities from the study in Chapter 6,
qualitative analysis of interviews with disabled end users suggests that there may be an
increased preference for being able to select music of one’s own choosing, rather than ran-
domly shuffling a music collection such as is popular with the general population (although
long-term behaviour may be different from users’ statements). This may be surprising as
the level of effort required for a person with a physical disability to interact with the system
is higher, and thus more effort might be saved in having the system select songs.

One possibility is that, at least for people with an acquired physical disability, regaining a
sense of control is important. This would be in line with the literature pointing out that the
motivation of physically disabled persons to interact with new technology and their drive to
achieve desired goals without regard for effort and time-cost should not be underestimated.
Further research into the way users with and without disabilities listen to music may be
important in designing music systems for both user groups.

Insights into a UCD process for development of applications for severely dis-
abled end users. Chapter 6 documents an iteration of a UCD process where disabled end
users have been involved from user requirements capture, to implementation, to evaluation
stages, has been described for a BCI application intended for an LiS end user. Although
an actual user with LiS did not evaluate the final prototype at the end, the process can
be considered a success as a person with tetraplegia was able to use and enjoyed using the
BCI music player. However, it is not possible to make conclusions about the long-term
use of the application. Limitations of the current BCI technology to be used by the end
user also cannot be ignored. It was shown that the mixed-users, mixed-methods approach
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strengthened the recommendations for designing the system, and thus the process can be
recommended as an approach to designing future applications for BCI.

7.3 Future Directions for Research

The work described in this thesis has raised many research questions deserving further
investigation. This section describes a select set of avenues for future work.

Validation of the use of simulations in the UCD process. In this research, online
simulation techniques were shown to be useful in the UCD process. One direction for future
work would be to further investigate the benefits and limitations of specific simulation
techniques for specific purposes, and the types of questions that different tools are best
at answering. One might also wish to evaluate how well the conclusions from simulation
studies translate to longitudinal use of an actual application.

Investigating feedback and control. The simulator aims to isolate control characteris-
tics of a real BCI. An interesting area of research would be to find out how these isolated
features affect the user’s ability to control a BCI, and what phenomena arise only from
having a human brain in the loop. For example, the level of noise in visual feedback (e.g.
noisy cursor movements) may affect a user’s ability to control the feedback because of an
extra cognitive load; on the other hand it may give rise to EEG artifacts that affect the
features extracted and are out of the user’s control. The simulator could be used to help
answer these and other such questions.

Development and improvement of user models. Further knowledge of BCI control
can be used to improve the user models. For example, the influence of feedback could be
investigated in order to improve the simulator such that it these effects into account. This
could then be used to provide better predictions of user performance for actual tasks.

Testing and investigating other selection mechanisms. Two different selection mech-
anisms were investigated in this thesis: the binary selection paradigm and the Rotate-Extend
(REx) controller. The simulator could also similarly be used to investigate other selection
mechanisms without having to use a real BCI. This would allow one to weed out selection
mechanisms that are unlikely to work.

Extension to other BCI paradigms. The simulation tools described in this research are
designed for motor-imagery and other mental-state based BCIs, and can be easily extended
to include systems with more than 2 classes. The use of simulation techniques to aid the
design process can also be applied to other BCI systems such as stimulus-driven paradigms.
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7.4 Conclusions

This thesis has investigated how simulation techniques can be used in the design and devel-
opment process of BCI applications. Although it can take time to develop the models and
prototypes, it has been shown that the benefits of using these tools can outweigh the costs
to designers, developers and end users alike. User models can be used to run offline simu-
lations which provide reliable estimates of task performance for a range of users, enabling
one to select the designs that maximise task performance out of a set of options for a given
user. Online simulations can realistically present the control characteristics of BCI, which
may be used to engage stakeholders in understanding a BCI without having to train and
use the system, and to explore selection mechanisms and tune application parameters. The
techniques can be used to identify usability problems and design solutions in advance of
carrying out actual BCI experiments, which are time-consuming and effortful for end users
and even healthy participants as they typically involve many repeated tasks over several
sessions. The wide range of inter- and intra-individual differences can also be taken into
account without involving BCI users across the whole spectrum of performances. Thus, the
substantial costs of modelling can significantly outweigh the costs and ethical considerations
arising from travelling to visit an end user, setting up the BCI and carrying out repeated
usability studies. Using and improving the tools and techniques described in this thesis can
be expected to enhance the quality and speed of designing and developing BCI applications
for people with LiS.
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Ganguly K. Jimenez J. Carmena J.M. Héliot, R. Learning in closed-loop brain–machine
interfaces: Modeling and experimental validation. IEEE Transactions on Systems, Man

192



7.4 Conclusions

and Cybernetics – Part B: Vybernetics, 40(5), 2010.

T. Hermann and A. Hunt. An introduction to interactive sonification. IEEE multimedia,
12(2):20–24, 2005.

R. Herriot. When Users Cannot be Included in Inclusive Design, volume Designing Inclusive
Systems. Springer, 2012.

W.E. Hick. On the rate of gain of information. Quarterly Journal of Experimental Psychol-
ogy, 4:11–26, 1952.

T. Hinterberger, J. Hill, and N. Birbaumer. An auditory brain-computer communication
device. In Biomedical Circuits and Systems, 2004 IEEE International Workshop on, pages
S3/6–15–18, 2004a.

T. Hinterberger, N. Neumann, M. Pham, A. Kübler, A. Grether, N. Hofmayer, B. Wilhelm,
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