33 research outputs found

    Joint Optimization of Waveform Covariance Matrix and Antenna Selection for MIMO Radar

    Full text link
    In this paper, we investigate the problem of jointly optimizing the waveform covariance matrix and the antenna position vector for multiple-input-multiple-output (MIMO) radar systems to approximate a desired transmit beampattern as well as to minimize the cross-correlation of the received signals reflected back from the targets. We formulate the problem as a non-convex program and then propose a cyclic optimization approach to efficiently tackle the problem. We further propose a novel local optimization framework in order to efficiently design the corresponding antenna positions. Our numerical investigations demonstrate a good performance both in terms of accuracy and computational complexity, making the proposed framework a good candidate for real-time radar signal processing applications.Comment: This paper is accepted for publication in the 2019 IEEE Asilomar Conference on Signals, Systems, and Computers (Asilomar 2019

    Design and Optimization of Physical Waveform-Diverse and Spatially-Diverse Radar Emissions

    Get PDF
    With the advancement of arbitrary waveform generation techniques, new radar transmission modes can be designed via precise control of the waveform's time-domain signal structure. The finer degree of emission control for a waveform (or multiple waveforms via a digital array) presents an opportunity to reduce ambiguities in the estimation of parameters within the radar backscatter. While this freedom opens the door to new emission capabilities, one must still consider the practical attributes for radar waveform design. Constraints such as constant amplitude (to maintain sufficient power efficiency) and continuous phase (for spectral containment) are still considered prerequisites for high-powered radar waveforms. These criteria are also applicable to the design of multiple waveforms emitted from an antenna array in a multiple-input multiple-output (MIMO) mode. In this work, three spatially-diverse radar emission design methods are introduced that provide constant amplitude, spectrally-contained waveforms implemented via a digital array radar (DAR). The first design method, denoted as spatial modulation, designs the radar waveforms via a polyphase-coded frequency-modulated (PCFM) framework to steer the coherent mainbeam of the emission within a pulse. The second design method is an iterative scheme to generate waveforms that achieve a desired wideband and/or widebeam radar emission. However, a wideband and widebeam emission can place a portion of the emitted energy into what is known as the `invisible' space of the array, which is related to the storage of reactive power that can damage a radar transmitter. The proposed design method purposefully avoids this space and a quantity denoted as the Fractional Reactive Power (FRP) is defined to assess the quality of the result. The third design method produces simultaneous radar and communications beams in separate spatial directions while maintaining constant modulus by leveraging the orthogonal complement of the emitted directions. This orthogonal energy defines a trade-space between power efficiency gained from constraining waveforms to be constant amplitude and power efficiency lost by emitting energy in undesired directions. The design of FM waveforms via traditional gradient-based optimization methods is also considered. A waveform model is proposed that is a generalization of the PCFM implementation, denoted as coded-FM (CFM), which defines the phase of the waveform via a summation of weighted, predefined basis functions. Therefore, gradient-based methods can be used to minimize a given cost function with respect to a finite set of optimizable parameters. A generalized integrated sidelobe level (GISL) metric is used as the optimization cost function to minimize the correlation range sidelobes of the radar waveform. System specific waveform optimization is explored by incorporating the linear models of three different loopback configurations into the GISL metric to match the optimized waveforms to the particular systems

    Cramér-Rao Bound Optimization for Joint Radar-Communication Beamforming

    Get PDF
    In this paper, we propose multi-input multi-output (MIMO) beamforming designs towards joint radar sensing and multi-user communications. We employ the Cramr-Rao bound (CRB) as a performance metric of target estimation, under both point and extended target scenarios. We then propose minimizing the CRB of radar sensing while guaranteeing a pre-defined level of signal-to-interference-plus-noise ratio (SINR) for each communication user. For the single-user scenario, we derive a closed form for the optimal solution for both cases of point and extended targets. For the multi-user scenario, we show that both problems can be relaxed into semidefinite programming by using the semidefinite relaxation approach, and prove that the global optimum can always be obtained. Finally, we demonstrate numerically that the globally optimal solutions are reachable via the proposed methods, which provide significant gains in target estimation performance over state-of-the-art benchmarks

    Wideband Waveform Design for Robust Target Detection

    Full text link
    Future radar systems are expected to use waveforms of a high bandwidth, where the main advantage is an improved range resolution. In this paper, a technique to design robust wideband waveforms for a Multiple-Input-Single-Output system is developed. The context is optimal detection of a single object with partially unknown parameters. The waveforms are robust in the sense that, for a single transmission, detection capability is maintained over an interval of time-delay and time-scaling (Doppler) parameters. A solution framework is derived, approximated, and formulated as an optimization by means of basis expansion. In terms of probabilities of detection and false alarm, numerical evaluation shows the efficiency of the proposed method when compared with a Linear Frequency Modulated signal and a Gaussian pulse.Comment: This paper is submitted for peer review to IEEE letters on signal processin

    The Bi-directional Spatial Spectrum for MIMO Radar and Its Applications

    Get PDF
    <p>Radar systems have long applied electronically-steered phased arrays to discriminate returns in azimuth angle and elevation angle. On receiver arrays, beamforming is performed after reception of the data, allowing for many adaptive array processing algorithms to be employed. However, on transmitter arrays, up until recently pre-determined phase shifts had to applied to each transmitter element before transmission, precluding adaptive transmit array processing schemes. Recent advances in multiple-input multiple-output radar techniques have allowed for transmitter channels to separated after data reception, allowing for virtual non-causal "after-the-fact" transmit beamforming. The ability to discriminate in both direction-of-arrival and direction-of-departure allows for the novel ability to discriminate line-of-sight returns from multipath returns. This works extends the concept of virtual non-causal transmit beamforming to the broader concept of a bi-directional spatial spectrum, and describes application of such a spectrum to applications such as spread-Doppler multipath clutter mitigation in ground-vehicle radar, and calibration of a receiver array of a MIMO system with ground clutter only. Additionally, for this work, a low-power MIMO radar testbed was developed for lab testing of MIMO radar concepts.</p>Dissertatio

    Joint Radar and Communication Design: Applications, State-of-the-Art, and the Road Ahead

    Get PDF
    Sharing of the frequency bands between radar and communication systems has attracted substantial attention, as it can avoid under-utilization of otherwise permanently allocated spectral resources, thus improving efficiency. Further, there is increasing demand for radar and communication systems that share the hardware platform as well as the frequency band, as this not only decongests the spectrum, but also benefits both sensing and signaling operations via the full cooperation between both functionalities. Nevertheless, the success of spectrum and hardware sharing between radar and communication systems critically depends on high-quality joint radar and communication designs. In the first part of this paper, we overview the research progress in the areas of radar-communication coexistence and dual-functional radar-communication (DFRC) systems, with particular emphasis on application scenarios and technical approaches. In the second part, we propose a novel transceiver architecture and frame structure for a DFRC base station (BS) operating in the millimeter wave (mmWave) band, using the hybrid analog-digital (HAD) beamforming technique. We assume that the BS is serving a multi-antenna user equipment (UE) over a mmWave channel, and at the same time it actively detects targets. The targets also play the role of scatterers for the communication signal. In that framework, we propose a novel scheme for joint target search and communication channel estimation, which relies on omni-directional pilot signals generated by the HAD structure. Given a fully-digital communication precoder and a desired radar transmit beampattern, we propose to design the analog and digital precoders under non-convex constant-modulus (CM) and power constraints, such that the BS can formulate narrow beams towards all the targets, while pre-equalizing the impact of the communication channel. Furthermore, we design a HAD receiver that can simultaneously process signals from the UE and echo waves from the targets. By tracking the angular variation of the targets, we show that it is possible to recover the target echoes and mitigate the resulting interference to the UE signals, even when the radar and communication signals share the same signal-to-noise ratio (SNR). The feasibility and efficiency of the proposed approaches in realizing DFRC are verified via numerical simulations. Finally, the paper concludes with an overview of the open problems in the research field of communication and radar spectrum sharing (CRSS)

    Waveform Diversity and Range-Coupled Adaptive Radar Signal Processing

    Get PDF
    Waveform diversity may offer several benefits to radar systems though often at the cost of reduced sensitivity. Multi-dimensional processing schemes are known to offer many degrees of freedom, which can be exploited to suppress the ambiguity inherent to pulse compression, array processing, and Doppler frequency estimation. Spatial waveform diversity can be achieved by transmitting different but correlated waveforms from each element of an antenna array. A simple yet effective scheme is employed to transmit different waveforms in different spatial directions. A new reiterative minimum mean squared error approach entitled Space-Range Adaptive Processing, which adapts simultaneously in range and angle, is derived and shown in simulation to offer enhanced performance when spatial waveform diversity is employed relative to both conventional matched filtering and sequentially adapting in angle and then range. The same mathematical framework is utilized to develop Time-Range Adaptive Processing (TRAP) algorithm which is capable of simultaneously adapting in Doppler frequency and range. TRAP is useful when pulse-to-pulse changing of the center frequency or waveform coding is used to achieve enhanced range resolution or unambiguous ranging, respectively. The inherent computational complexity of the new multi-dimensional algorithms is addressed by segmenting the full-dimension cost functions, yielding a reduced-dimensional variants of each. Finally, a non-adaptive approach based on the multi-dimensional TRAP signal model is utilized to develop an efficient clutter cancellation technique capable of suppressing multiple range intervals of clutter when waveform diversity is applied to pulse-Doppler radar
    corecore