3,343 research outputs found

    Parameterized Synthesis Case Study: AMBA AHB (extended version)

    Full text link
    We revisit the AMBA AHB case study that has been used as a benchmark for several reactive syn- thesis tools. Synthesizing AMBA AHB implementations that can serve a large number of masters is still a difficult problem. We demonstrate how to use parameterized synthesis in token rings to obtain an implementation for a component that serves a single master, and can be arranged in a ring of arbitrarily many components. We describe new tricks -- property decompositional synthesis, and direct encoding of simple GR(1) -- that together with previously described optimizations allowed us to synthesize the model with 14 states in 30 minutes.Comment: Moved to appendix some not very important proofs. To section 'optimizations: added the model for 0-process. Extended version of the paper submitted to SYNT 201

    A method for analyzing the performance aspects of the fault-tolerance mechanisms in FDDI

    Get PDF
    The ability of error recovery mechanisms to make the Fiber Distributed Data Interface (FDDI) satisfy real-time performance constraints in the presence of errors is analyzed. A complicating factor in these analyses is the rarity of the error occurrences, which makes direct simulation unattractive. Therefore, a fast simulation technique, called injection simulation, which makes it possible to analyze the performance of FDDI, including its fault tolerance behavior, was developed. The implementation of injection simulation for polling models of FDDI is discussed, along with simulation result

    Verifying the distributed real-time network protocol RTnet using Uppaal

    Get PDF
    RTnet is a distributed real-time network protocol for fully-connected local area networks with a broadcast capability. It supports streaming real-time and non-realtime traffic and on-the-fly addition and removal of network nodes. This paper presents a formal analysis of RTnet using the model checker Uppaal. Besides normal protocol behaviour, the analysis focuses on the fault-handling properties of RTnet, in particular recovery after packet loss. Both qualitative and quantitative properties are presented, together with the verification results and conclusions about the robustness of RTnet

    Self-stabilizing K-out-of-L exclusion on tree network

    Get PDF
    In this paper, we address the problem of K-out-of-L exclusion, a generalization of the mutual exclusion problem, in which there are ℓ\ell units of a shared resource, and any process can request up to k\mathtt k units (1≀k≀ℓ1\leq\mathtt k\leq\ell). We propose the first deterministic self-stabilizing distributed K-out-of-L exclusion protocol in message-passing systems for asynchronous oriented tree networks which assumes bounded local memory for each process.Comment: 15 page

    Automated Synthesis of Distributed Self-Stabilizing Protocols

    Full text link
    In this paper, we introduce an SMT-based method that automatically synthesizes a distributed self-stabilizing protocol from a given high-level specification and network topology. Unlike existing approaches, where synthesis algorithms require the explicit description of the set of legitimate states, our technique only needs the temporal behavior of the protocol. We extend our approach to synthesize ideal-stabilizing protocols, where every state is legitimate. We also extend our technique to synthesize monotonic-stabilizing protocols, where during recovery, each process can execute an most once one action. Our proposed methods are fully implemented and we report successful synthesis of well-known protocols such as Dijkstra's token ring, a self-stabilizing version of Raymond's mutual exclusion algorithm, ideal-stabilizing leader election and local mutual exclusion, as well as monotonic-stabilizing maximal independent set and distributed Grundy coloring

    Learning to Prove Safety over Parameterised Concurrent Systems (Full Version)

    Full text link
    We revisit the classic problem of proving safety over parameterised concurrent systems, i.e., an infinite family of finite-state concurrent systems that are represented by some finite (symbolic) means. An example of such an infinite family is a dining philosopher protocol with any number n of processes (n being the parameter that defines the infinite family). Regular model checking is a well-known generic framework for modelling parameterised concurrent systems, where an infinite set of configurations (resp. transitions) is represented by a regular set (resp. regular transducer). Although verifying safety properties in the regular model checking framework is undecidable in general, many sophisticated semi-algorithms have been developed in the past fifteen years that can successfully prove safety in many practical instances. In this paper, we propose a simple solution to synthesise regular inductive invariants that makes use of Angluin's classic L* algorithm (and its variants). We provide a termination guarantee when the set of configurations reachable from a given set of initial configurations is regular. We have tested L* algorithm on standard (as well as new) examples in regular model checking including the dining philosopher protocol, the dining cryptographer protocol, and several mutual exclusion protocols (e.g. Bakery, Burns, Szymanski, and German). Our experiments show that, despite the simplicity of our solution, it can perform at least as well as existing semi-algorithms.Comment: Full version of FMCAD'17 pape
    • 

    corecore