553 research outputs found

    Universal Estimation of Directed Information

    Full text link
    Four estimators of the directed information rate between a pair of jointly stationary ergodic finite-alphabet processes are proposed, based on universal probability assignments. The first one is a Shannon--McMillan--Breiman type estimator, similar to those used by Verd\'u (2005) and Cai, Kulkarni, and Verd\'u (2006) for estimation of other information measures. We show the almost sure and L1L_1 convergence properties of the estimator for any underlying universal probability assignment. The other three estimators map universal probability assignments to different functionals, each exhibiting relative merits such as smoothness, nonnegativity, and boundedness. We establish the consistency of these estimators in almost sure and L1L_1 senses, and derive near-optimal rates of convergence in the minimax sense under mild conditions. These estimators carry over directly to estimating other information measures of stationary ergodic finite-alphabet processes, such as entropy rate and mutual information rate, with near-optimal performance and provide alternatives to classical approaches in the existing literature. Guided by these theoretical results, the proposed estimators are implemented using the context-tree weighting algorithm as the universal probability assignment. Experiments on synthetic and real data are presented, demonstrating the potential of the proposed schemes in practice and the utility of directed information estimation in detecting and measuring causal influence and delay.Comment: 23 pages, 10 figures, to appear in IEEE Transactions on Information Theor

    Secrecy Through Synchronization Errors

    Full text link
    In this paper, we propose a transmission scheme that achieves information theoretic security, without making assumptions on the eavesdropper's channel. This is achieved by a transmitter that deliberately introduces synchronization errors (insertions and/or deletions) based on a shared source of randomness. The intended receiver, having access to the same shared source of randomness as the transmitter, can resynchronize the received sequence. On the other hand, the eavesdropper's channel remains a synchronization error channel. We prove a secrecy capacity theorem, provide a lower bound on the secrecy capacity, and propose numerical methods to evaluate it.Comment: 5 pages, 6 figures, submitted to ISIT 201

    Characterization of Information Channels for Asymptotic Mean Stationarity and Stochastic Stability of Non-stationary/Unstable Linear Systems

    Full text link
    Stabilization of non-stationary linear systems over noisy communication channels is considered. Stochastically stable sources, and unstable but noise-free or bounded-noise systems have been extensively studied in information theory and control theory literature since 1970s, with a renewed interest in the past decade. There have also been studies on non-causal and causal coding of unstable/non-stationary linear Gaussian sources. In this paper, tight necessary and sufficient conditions for stochastic stabilizability of unstable (non-stationary) possibly multi-dimensional linear systems driven by Gaussian noise over discrete channels (possibly with memory and feedback) are presented. Stochastic stability notions include recurrence, asymptotic mean stationarity and sample path ergodicity, and the existence of finite second moments. Our constructive proof uses random-time state-dependent stochastic drift criteria for stabilization of Markov chains. For asymptotic mean stationarity (and thus sample path ergodicity), it is sufficient that the capacity of a channel is (strictly) greater than the sum of the logarithms of the unstable pole magnitudes for memoryless channels and a class of channels with memory. This condition is also necessary under a mild technical condition. Sufficient conditions for the existence of finite average second moments for such systems driven by unbounded noise are provided.Comment: To appear in IEEE Transactions on Information Theor

    Correlation-powered Information Engines and the Thermodynamics of Self-Correction

    Full text link
    Information engines can use structured environments as a resource to generate work by randomizing ordered inputs and leveraging the increased Shannon entropy to transfer energy from a thermal reservoir to a work reservoir. We give a broadly applicable expression for the work production of an information engine, generally modeled as a memoryful channel that communicates inputs to outputs as it interacts with an evolving environment. The expression establishes that an information engine must have more than one memory state in order to leverage input environment correlations. To emphasize this functioning, we designed an information engine powered solely by temporal correlations and not by statistical biases, as employed by previous engines. Key to this is the engine's ability to synchronize---the engine automatically returns to a desired dynamical phase when thrown into an unwanted, dissipative phase by corruptions in the input---that is, by unanticipated environmental fluctuations. This self-correcting mechanism is robust up to a critical level of corruption, beyond which the system fails to act as an engine. We give explicit analytical expressions for both work and critical corruption level and summarize engine performance via a thermodynamic-function phase diagram over engine control parameters. The results reveal a new thermodynamic mechanism based on nonergodicity that underlies error correction as it operates to support resilient engineered and biological systems.Comment: 22 pages, 13 figures; http://csc.ucdavis.edu/~cmg/compmech/pubs/tos.ht

    Universal Densities Exist for Every Finite Reference Measure

    Full text link
    As it is known, universal codes, which estimate the entropy rate consistently, exist for stationary ergodic sources over finite alphabets but not over countably infinite ones. We generalize universal coding as the problem of universal densities with respect to a fixed reference measure on a countably generated measurable space. We show that universal densities, which estimate the differential entropy rate consistently, exist for finite reference measures. Thus finite alphabets are not necessary in some sense. To exhibit a universal density, we adapt the non-parametric differential (NPD) entropy rate estimator by Feutrill and Roughan. Our modification is analogous to Ryabko's modification of prediction by partial matching (PPM) by Cleary and Witten. Whereas Ryabko considered a mixture over Markov orders, we consider a mixture over quantization levels. Moreover, we demonstrate that any universal density induces a strongly consistent Ces\`aro mean estimator of conditional density given an infinite past. This yields a universal predictor with the 010-1 loss for a countable alphabet. Finally, we specialize universal densities to processes over natural numbers and on the real line. We derive sufficient conditions for consistent estimation of the entropy rate with respect to infinite reference measures in these domains.Comment: 28 pages, no figure

    On the Capacity of Multilevel NAND Flash Memory Channels

    Full text link
    In this paper, we initiate a first information-theoretic study on multilevel NAND flash memory channels with intercell interference. More specifically, for a multilevel NAND flash memory channel under mild assumptions, we first prove that such a channel is indecomposable and it features asymptotic equipartition property; we then further prove that stationary processes achieve its information capacity, and consequently, as its order tends to infinity, its Markov capacity converges to its information capacity; eventually, we establish that its operational capacity is equal to its information capacity. Our results suggest that it is highly plausible to apply the ideas and techniques in the computation of the capacity of finite-state channels, which are relatively better explored, to that of the capacity of multilevel NAND flash memory channels.Comment: Submitted to IEEE Transactions on Information Theor
    corecore