2 research outputs found

    Uncertainties in the Geostationary Ocean Color Imager (GOCI) Remote Sensing Reflectance for Assessing Diurnal Variability of Biogeochemical Processes

    Get PDF
    Short-term (sub-diurnal) biological and biogeochemical processes cannot be fully captured by the current suite of polar-orbiting satellite ocean color sensors, as their temporal resolution is limited to potentially one clear image per day. Geostationary sensors, such as the Geostationary Ocean Color Imager (GOCI) from the Republic of Korea, allow the study of these short-term processes because their orbit permit the collection of multiple images throughout each day for any area within the sensors field of regard. Assessing the capability to detect sub-diurnal changes in in-water properties caused by physical and biogeochemical processes characteristic of open ocean and coastal ocean ecosystems, however, requires an understanding of the uncertainties introduced by the instrument and/or geophysical retrieval algorithms. This work presents a study of the uncertainties during the daytime period for an ocean region with characteristically low-productivity with the assumption that only small and undetectable changes occur in the in-water properties due to biogeochemical processes during the daytime period. The complete GOCI mission data were processed using NASAs SeaDAS/l2gen package. The assumption of homogeneity of the study region was tested using three-day sequences and diurnal statistics. This assumption was found to hold based on the minimal diurnal and day-to-day variability in GOCI data products. Relative differences with respect to the midday value were calculated for each hourly observation of the day in order to investigate what time of the day the variability is greater. Also, the influence of the solar zenith angle in the retrieval of remote sensing reflectances and derived products was examined. Finally, we determined that the uncertainties in water-leaving remote-sensing reflectance (Rrs) for the 412,443, 490, 555, 660 and 680 nm bands on GOCI are 8.05 x 10(exp -4), 5.49 x 10(exp -4), 4.48 x 10(exp -4), 2.51 x 10(exp -4), 8.83 x 10(exp -5), and 1.36 x 10(exp -4)/sr, respectively, and 1.09 x 10(exp -2)/cu.mgm for the chlorophyll-a concentration (Chl-a), 2.09 x 10(exp -3)/m for the absorption coefficient of chromophoric dissolved organic matter at 412 nm (a(sub g) (412)), and 3.7 mg/cu.m for particulate organic carbon (POC). These R(sub rs) values can be considered the threshold values for detectable changes of the in-water properties due to biological, physical or biogeochemical processes from GOCI

    ์ฒœ๋ฆฌ์•ˆ ํ•ด์–‘์œ„์„ฑ์˜ ๋Œ€๊ธฐ๋ณด์ • ๋ฐ ๋Œ€๋ฆฌ๊ต์ • ์—ฐ๊ตฌ

    Get PDF
    ๋ณธ ํ•™์œ„๋…ผ๋ฌธ์€ ์„ธ๊ณ„์ตœ์ดˆ์˜ ์ •์ง€๊ถค๋„ ํ•ด์ƒ‰ ์œ„์„ฑ์ธ ์ฒœ๋ฆฌ์•ˆ ํ•ด์–‘ ์œ„์„ฑ (GOCI : Geostationary Ocean Color Imager)์— ํ‘œ์ค€์œผ๋กœ ์‚ฌ์šฉ๋˜๋Š” ๋Œ€๊ธฐ๋ณด์ • ์ด๋ก ์— ๋Œ€ํ•˜์—ฌ ๊ธฐ์ˆ ํ•˜๊ณ  ์žˆ๋‹ค. ํƒ€ ๊ทน๊ถค๋„ ํ•ด์ƒ‰์œ„์„ฑ๋“ค์ด 1~2์ผ ์ฃผ๊ธฐ๋กœ ํ•œ ์žฅ์†Œ๋ฅผ ๋ฐฉ๋ฌธํ•˜๋ฉฐ ์ „ ์ง€๊ตฌ๋ฅผ ๊ด€์ธกํ•˜๋Š” ๊ฒƒ๊ณผ ๋‹ฌ๋ฆฌ ์ฒœ๋ฆฌ์•ˆ ํ•ด์–‘์œ„์„ฑ์€ ํ•œ๋ฐ˜๋„๋ฅผ ํฌํ•จํ•œ ๋™๋ถ์•„ํ•ด์—ญ์„ 0.5 km ๊ณต๊ฐ„ํ•ด์ƒ๋„๋กœ ๋‚ฎ ์‹œ๊ฐ„ ๋™์•ˆ 1์‹œ๊ฐ„์˜ ์‹œ๊ฐ„๊ฐ„๊ฒฉ์œผ๋กœ ๊ด€์ธกํ•˜๊ณ  ์žˆ์œผ๋ฉฐ (ํ•˜๋ฃจ 8ํšŒ ๊ด€์ธก) ๊ฐ€์‹œ๊ด‘~๊ทผ์ ์™ธํŒŒ์žฅ๋Œ€ (412, 443, 490, 555, 660, 680, 745, 865 nm) ์˜์—ญ์—์„œ ๊ด€์ธกํ•œ๋‹ค. ๋Œ€๊ธฐ์ƒ์ธต ์œ„์„ฑ๊ถค๋„์—์„œ ์ผ๋ฐ˜์ ์ธ ๋ง‘์€ ํ•ด์—ญ์„ ๋Œ€์ƒ์œผ๋กœ ๊ด€์ธก๋œ ๊ฐ€์‹œ๊ด‘~๊ทผ์ ์™ธํŒŒ์žฅ๋Œ€ ์‹ ํ˜ธ ์ค‘ 90%์ด์ƒ์€ ๋Œ€๊ธฐ์‹ ํ˜ธ์ด๋ฉฐ, ํ•ด์ˆ˜์‹ ํ˜ธ์˜ ํฌ๊ธฐ๋Š” 10% ๋ฏธ๋งŒ์„ ์ฐจ์ง€ํ•œ๋‹ค. ๋Œ€๊ธฐ์‹ ํ˜ธ์˜ ํฌ๊ธฐ๊ฐ€ ํ•ด์ˆ˜์‹ ํ˜ธ์˜ ํฌ๊ธฐ๋ณด๋‹ค 10๋ฐฐ ์ด์ƒ ํฌ๊ธฐ ๋•Œ๋ฌธ์— 1%์˜ ๋Œ€๊ธฐ์‹ ํ˜ธ ์ถ”์ • ์˜ค์ฐจ๋Š” 10%์ด์ƒ์˜ ํ•ด์ˆ˜ ๊ด‘ ์ŠคํŽ™ํŠธ๋Ÿผ ์ถ”์ •์˜ค๋ฅ˜๋ฅผ ์ผ์œผํ‚จ๋‹ค. ์ด๋Ÿฐ ์ด์œ ๋กœ ์œ„์„ฑ์„ ํ†ตํ•œ ํ•ด์ƒ‰์›๊ฒฉํƒ์‚ฌ ์ž„๋ฌด๋Š” ๋†’์€ ๋Œ€๊ธฐ๋ณด์ • ์ •๋ฐ€๋„๋ฅผ ์š”๊ตฌํ•˜๊ณ  ์žˆ์œผ๋ฉฐ ๋Œ€๊ธฐ๋ณด์ •์˜ ๊ฐœ๋ฐœ์ด ํ•ด์ƒ‰์›๊ฒฉํƒ์‚ฌ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ๊ฐœ๋ฐœ ์ค‘ ๊ฐ€์žฅ ํ•ต์‹ฌ์ด ๋œ๋‹ค. ์ฒœ๋ฆฌ์•ˆ ํ•ด์–‘์œ„์„ฑ ํ‘œ์ค€ ๋Œ€๊ธฐ๋ณด์ •์€ NASA๊ฐ€ ํ•ด์ƒ‰์›๊ฒฉํƒ์‚ฌ ์ž„๋ฌด๋ฅผ ์œ„ํ•ด ๊ฐœ๋ฐœํ•œ SeaWiFS ํ‘œ์ค€ ๋Œ€๊ธฐ๋ณด์ •์— ์ด๋ก ์ ์ธ ๊ธฐ๋ฐ˜์„ ๋‘๊ณ  ์žˆ๋‹ค. SeaWiFS ๋ฐฉ๋ฒ•์€ ์šฐ์„  ๋‘๊ฐœ์˜ ๊ทผ์ ์™ธ ํŒŒ์žฅ๋Œ€ ๊ด€์ธก๊ฒฐ๊ณผ์™€ ๋ณต์‚ฌ์ „๋‹ฌ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ฒฐ๊ณผ(์กฐ๊ฒฌํ‘œ)๋ฅผ ์„œ๋กœ ๋น„๊ตํ•˜์—ฌ ๋Œ€๊ธฐ ์ค‘ ์—์–ด๋กœ์กธ ์ž…์ž์˜ ์ข…๋ฅ˜ ๋ฐ ๋†๋„ ์ตœ์ ๊ฐ’์„ ์ถ”์ •ํ•ด ๋‚ด๋ฉฐ ์ด ์ถ”์ •๊ฒฐ๊ณผ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ๋ชจ๋“  ๊ฐ€์‹œ๊ด‘ ํŒŒ์žฅ์˜ ์—์–ด๋กœ์กธ ๋ฐ˜์‚ฌ๋„ ์ŠคํŽ™ํŠธ๋Ÿผ์„ ๋‹ค์‹œ ์กฐ๊ฒฌํ‘œ๋ฅผ ์ด์šฉํ•˜์—ฌ ๊ณ„์‚ฐํ•œ๋‹ค. ์ฒœ๋ฆฌ์•ˆ ํ•ด์–‘์œ„์„ฑ์˜ ๋Œ€๊ธฐ๋ณด์ •๋„ ์œ ์‚ฌํ•˜๊ฒŒ ๋‘ ๊ทผ์ ์™ธํŒŒ์žฅ๋Œ€ ์—์–ด๋กœ์กธ ๋ฐ˜์‚ฌ๋„ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ์ด์šฉํ•˜์—ฌ ์—์–ด๋กœ์กธ ์ข…๋ฅ˜ ๋ฐ ๋†๋„๋ฅผ ๊ณ„์‚ฐํ•˜๋Š”๋ฐ, ์ด ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•˜์—ฌ SeaWiFS ๋ฐ ๋‹ค๋ฅธ ์œ ์‚ฌ ๋Œ€๊ธฐ๋ณด์ • ๋ฐฉ๋ฒ•๋“ค๊ณผ ๋น„๊ตํ•˜์—ฌ ์ •ํ™•๋„ ๋ฟ ์•„๋‹ˆ๋ผ ๊ณ„์‚ฐ ํšจ์œจ ๋˜ํ•œ ๊ฐœ์„ ํ•˜์˜€๋‹ค. ์ถ”๊ฐ€์ ์œผ๋กœ SeaWiFS์— ์ ์šฉ๋œ ์ˆ˜์ฆ๊ธฐ ํก๊ด‘ ๋ณด์ • ๋ชจ๋ธ์„ ์ฒœ๋ฆฌ์•ˆ ํ•ด์–‘์œ„์„ฑ์˜ ๋ถ„๊ด‘ํŠน์„ฑ์— ๋งž๊ฒŒ ์ˆ˜์ •ํ•˜์—ฌ ์ ์šฉํ•˜์˜€์œผ๋ฉฐ, ํƒ๋„๊ฐ€ ๋†’์€ ํ•ด์—ญ์—์„œ ๋Œ€๊ธฐ๋ณด์ • ์˜ค์ฐจ๋ฅผ ์ค„์ด๋Š” ๋ฐฉ๋ฒ•๋„ ์ฒœ๋ฆฌ์•ˆ ํ•ด์–‘์œ„์„ฑ ๊ด€์ธก์˜์—ญ์˜ ํ•ด์ˆ˜ ๊ด‘ ํŠน์„ฑ ๋ฐ ๋ฐ˜์‚ฌ๋„ ์ •๋ณด๋“ค์„ ์ด์šฉํ•˜์—ฌ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. ์ดˆ๊ธฐ๋ฒ„์ „์˜ ์ฒœ๋ฆฌ์•ˆ ํ•ด์–‘์œ„์„ฑ ํ‘œ์ค€ ๋Œ€๊ธฐ๋ณด์ •์˜ ๊ฒ€๋ณด์ • ๊ฒฐ๊ณผ ํƒ๋„๊ฐ€ ๋†’์€ ์—ฐ์•ˆํ•ด์—ญ์—์„œ๋Š” 10% ๋‚ด์™ธ์˜ ๋งŒ์กฑํ•  ๋งŒํ•œ ์˜ค์ฐจ์ˆ˜์ค€์„ ๋ณด์—ฌ์ฃผ์—ˆ์œผ๋‚˜, ํƒ๋„๊ฐ€ ๋‚ฎ์€ ํ•ด์—ญ์—์„œ๋Š” 50% ์ด์ƒ์˜ ์˜ค์ฐจ๋ฅผ ๋ฐœ์ƒ๋˜์—ˆ๋‹ค. ์ด๋Š” ๋Œ€๋ฆฌ๊ต์ • ์ˆ˜ํ–‰์˜ ๋ถ€์žฌ๊ฐ€ ์ฃผ๋œ ์š”์ธ์ด๋ฉฐ, ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ด๋ฅผ ๋ณด์™„ํ•˜๊ธฐ ์œ„ํ•ด SeaWiFS ํ‘œ์ค€ ๋Œ€๋ฆฌ๊ต์ • ํ”„๋กœ์„ธ์Šค์— ๊ธฐ๋ฐ˜์„ ๋‘๊ณ  ์ฒœ๋ฆฌ์•ˆ ํ•ด์–‘์œ„์„ฑ์— ๋งž๊ฒŒ ๋Œ€๋ฆฌ๊ต์ •์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ์ด ๋Œ€๋ฆฌ๊ต์ • ๋ฐฉ๋ฒ•์—์„œ๋Š” ํŠน์ • ํ•ด์—ญ์˜ ์—์–ด๋กœ์กธ ๊ด‘ํŠน์„ฑ์ด ํ•ญ์ƒ ํ•ด์–‘์„ฑ ์—์–ด๋กœ์กธ์ด๋ผ ๊ฐ€์ •ํ•˜๊ณ  ์ด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ๊ทผ์ ์™ธ ํŒŒ์žฅ๋Œ€ ์œ„์„ฑ ๊ด€์ธก ์กฐ๋„๋ฅผ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ํ•˜์—ฌ ๋‘ ๊ทผ์ ์™ธ ํŒŒ์žฅ๋Œ€๋ฅผ ๋จผ์ € ์ƒ๋Œ€๊ต์ • ํ•œ๋‹ค. ์ดํ›„, ์ƒ๋Œ€๊ต์ •๋œ ๋‘ ๊ทผ์ ์™ธ ํŒŒ์žฅ๋Œ€๋ฅผ ์ด์šฉํ•˜๋ฉด ๋ง‘์€ ํ•ด์—ญ์—์„œ ๋ณต์‚ฌ์ „๋‹ฌ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ํ†ตํ•˜์—ฌ ๊ฐ€์‹œ๊ด‘ ํŒŒ์žฅ๋Œ€ ๋Œ€๊ธฐ์กฐ๋„๋ฅผ ๋ชจ์˜ ํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋˜๊ณ , ์—ฌ๊ธฐ์— ๋ง‘์€ ํ•ด์—ญ์˜ ํ˜„์žฅ ๊ด‘ ์ธก์ • ์ž๋ฃŒ๊ฐ€ ์ถ”๊ฐ€๋˜๋ฉด ๊ฐ€์‹œ๊ด‘ํŒŒ์žฅ๋Œ€ ์œ„์„ฑ๊ด€์ธก์กฐ๋„์˜ ์‹œ๋ฎฌ๋ ˆ์ด์…˜์ด ๊ฐ€๋Šฅํ•˜๋‹ค. ์ด ๊ฐ€์‹œ๊ด‘ํŒŒ์žฅ๋Œ€ ๋ชจ์˜ ๊ฒฐ๊ณผ์™€ ์‹ค์ œ ์œ„์„ฑ๊ด€์ธก์กฐ๋„์™€ ๋น„๊ตํ•˜๋ฉด ๊ฐ€์‹œ๊ด‘ํŒŒ์žฅ๋Œ€ ๋Œ€๋ฆฌ๊ต์ •์„ ์™„๋ฃŒํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ณธ ๋Œ€๋ฆฌ๊ต์ • ๊ฒฐ๊ณผ ๋Œ€๋ฆฌ๊ต์ • ์ƒ์ˆ˜๊ฐ€ ์ตœ๋Œ€ 3.2% ๋ฐ”๋€Œ์—ˆ์œผ๋ฉฐ (490 nm ๋ฐด๋“œ) ์ƒˆ ๋Œ€๋ฆฌ๊ต์ • ์ƒ์ˆ˜ ์ ์šฉ ์‹œ ๋ง‘์€ ํ•ด์—ญ ๋Œ€๊ธฐ๋ณด์ • ์ •ํ™•๋„๊ฐ€ ์ตœ๋Œ€ 50% ์ด์ƒ ์ƒ์Šนํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ฒœ๋ฆฌ์•ˆํ•ด์–‘์œ„์„ฑ ๋Œ€๊ธฐ๋ณด์ •์˜ ์„ฑ๋Šฅ์„ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•ด์„œ ๋Œ€๊ธฐ๋ณด์ • ๊ฒฐ๊ณผ ์›๊ฒฉ๋ฐ˜์‚ฌ๋„ (remote-sensing reflectance: Rrs)๋ฅผ ํ•œ๊ตญํ•ด์–‘๊ณผํ•™๊ธฐ์ˆ ์› ํ•ด์–‘์œ„์„ฑ์—ฐ๊ตฌ์„ผํ„ฐ์—์„œ 2010๋…„ ์ดํ›„๋กœ ํ•œ๋ฐ˜๋„ ์ฃผ๋ณ€ ํ•ด์—ญ ํ˜„์žฅ์กฐ์‚ฌ๋ฅผ ํ†ตํ•ด ์ˆ˜์ง‘ํ•œ ์›๊ฒฉ๋ฐ˜์‚ฌ๋„ ์ž๋ฃŒ๋“ค๊ณผ ๋น„๊ต๊ฒ€์ • ํ•˜์˜€์œผ๋ฉฐ, ๊ฒ€์ •๊ฒฐ๊ณผ 76, 84, 88, 90, 81, 82%์˜ ์ •ํ™•๋„๋ฅผ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. ์ถ”๊ฐ€๋กœ ํ˜„์žฅ์ž๋ฃŒ๊ฐ€ ์•„๋‹Œ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ์ž๋ฃŒ๋ฅผ ํ†ตํ•ด ์ฒœ๋ฆฌ์•ˆ ํ•ด์–‘์œ„์„ฑ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ๋ฟ ์•„๋‹ˆ๋ผ ๋‹ค๋ฅธ ํ•ด์ƒ‰์›๊ฒฉํƒ์‚ฌ ์ž„๋ฌด๋ฅผ ์œ„ํ•ด ๊ฐœ๋ฐœ๋œ ์ฃผ์š” ๋Œ€๊ธฐ๋ณด์ • ์•Œ๊ณ ๋ฆฌ์ฆ˜๋“ค ๊ตฌํ˜„ํ•˜์—ฌ ํ•จ๊ป˜ ๋น„๊ต๊ฒ€์ฆ ํ•˜์˜€๊ณ , ๋ณธ ๋น„๊ต๊ฒ€์ฆ์—์„œ๋„ ์ฒœ๋ฆฌ์•ˆ ํ•ด์–‘์œ„์„ฑ ํ‘œ์ค€ ๋Œ€๊ธฐ๋ณด์ •์ด ๋‹ค๋ฅธ ๋Œ€๊ธฐ๋ณด์ • ๋ฐฉ๋ฒ•๋“ค๊ณผ ๋น„๊ตํ•˜์—ฌ ๊ฐ€์žฅ ๋‚ฎ์€ ์˜ค์ฐจ์œจ์„ ๋ณด์—ฌ์ฃผ์—ˆ์œผ๋ฉฐ, ํŠนํžˆ ๋‹ค์ค‘์‚ฐ๋ž€ ํšจ๊ณผ๊ฐ€ ํฐ ์ž‘์€ ์ž…์žํฌ๊ธฐ์˜ ์—์–ด๋กœ์กธ ๋ชจ๋ธ์—์„œ ๋” ์ข‹์€ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๊ฒฐ๊ณผ๋Š” ์ด๋ก ์ ์œผ๋กœ SeaWiFS ๋“ฑ ๋น„์Šทํ•œ ๋ฐด๋“œ ํŠน์„ฑ์„ ๊ฐ€์ง„ ํƒ€ ํ•ด์ƒ‰์œ„์„ฑ์˜ ๋Œ€๊ธฐ๋ณด์ •๋ฐฉ๋ฒ•์œผ๋กœ๋„ ์ ์šฉ์ด ๊ฐ€๋Šฅํ•˜๋ฉฐ, ์ฒœ๋ฆฌ์•ˆ ํ•ด์–‘์œ„์„ฑ ์ž๋ฃŒ์ฒ˜๋ฆฌ์‹œ์Šคํ…œ (GOCI data processing system: GDPS) 1.5๋ฒ„์ „์—์˜ ์ ์šฉ๋  ์˜ˆ์ •์ด๋‹ค.Chapter 1. Introduction 1 1.1 Ocean color remote sensing 1 1.2 Geostationary Ocean Color Imager (GOCI) 2 1.3 Atmospheric correction and vicarious calibration 5 Chapter 2. Initial atmospheric correction for the GOCI data 10 2.1 Introduction 10 2.2 Method 11 2.2.1 Correction for gaseous absorption and whitecap radiance 13 2.2.2 Solar irradiance normalization 15 2.2.3 Correction for molecular (Rayleigh) scattering 17 2.2.4 Cloud mask 18 2.2.5 Correction for multiple scattering by aerosols 19 2.2.6 Correction for atmospheric transmittance 22 2.2.7 Correction for near-infrared water reflectance over turbid waters 22 2.3 Conclusion 24 Chapter 3. Algorithm updates and vicarious calibration for the GOCI atmospheric correction 25 3.1 Backgrounds 25 3.2 Updates to the initial GOCI atmospheric correction algorithm 26 3.2.1 Correction for gaseous absorption and whitecap radiance 26 3.2.2 Sun-glint correction 28 3.2.3 Considering gravity effect for Rayleigh scattering 29 3.2.4 Correction for multiple scattering by aerosols - SRAMS 30 3.2.5 Correction for bidirectional effects for water reflectance 35 3.2.6 Correction for near-infrared water reflectance over turbid waters 39 3.2.7 Atmospheric transmittance with considering anisotropic angular distribution of water reflectance 40 3.3 Vicarious calibration of GOCI near-infrared bands 41 3.3.1 Method 44 3.3.2 Inter-calibration of GOCI near-infrared bands 45 3.3.3 Vicarious calibration of GOCI visible bands 49 Chapter 4. Validation results 51 4.1 Data 51 4.1.1 Synthetic data derived by simulations 51 4.1.2 In situ radiometric data measured from shipboard 52 4.1.3 AERONET-OC radiometric data 56 4.2 Validation of SRAMS scheme with simulation data 58 4.3 Assessment of the atmospheric correction improvements with in situ radiometric data 59 Chapter 5. Discussions 61 5.1 Impacts of water vapor correction on ocean color products 61 5.2 Stability for high solar and satellite zenith angle for diurnal observation 62 5.3 Cloud masking on fast-moving clouds and quality analysis 63 5.4 Evaluation of the GOCI aerosol correction scheme compared with other approaches 64 5.4.1 Aerosol correction approach for OCTS 64 5.4.2 Aerosol correction approach for MERIS 67 5.4.3 Evaluation results 69 5.5 Pitfalls in estimation of aerosol reflectance using 2-NIR bands 71 5.6 Issues in the vicarious calibration of GOCI VIS and NIR bands 72 5.7 Uncertainties from bidirectional effect 75 Chapter 6. Conclusion 76 Appendix. Glossary of symbols 82 Acknowledgements 86 References 88Docto
    corecore