19,463 research outputs found

    High fidelity one-qubit operations under random telegraph noise

    Full text link
    We address the problem of implementing high fidelity one-qubit operations subject to time dependent noise in the qubit energy splitting. We show with explicit numerical results that high fidelity bit flips and one-qubit NOT gates may be generated by imposing bounded control fields. For noise correlation times shorter than the time for a pi-pulse, the time optimal pi-pulse yields the highest fidelity. For very long correlation times, fidelity loss is approximately due to systematic error, which is efficiently tackled by compensation for off-resonance with a pulse sequence (CORPSE). For intermediate ranges of the noise correlation time we find that short CORPSE, which is less accurate than CORPSE in correcting systematic errors, yields higher fidelities. Numerical optimization of the pulse sequences using gradient ascent pulse engineering results in noticeable improvement of the fidelities for the bit flip and marginal improvement for the NOT gate.Comment: 7 pages, 6 figure

    Correlation-powered Information Engines and the Thermodynamics of Self-Correction

    Full text link
    Information engines can use structured environments as a resource to generate work by randomizing ordered inputs and leveraging the increased Shannon entropy to transfer energy from a thermal reservoir to a work reservoir. We give a broadly applicable expression for the work production of an information engine, generally modeled as a memoryful channel that communicates inputs to outputs as it interacts with an evolving environment. The expression establishes that an information engine must have more than one memory state in order to leverage input environment correlations. To emphasize this functioning, we designed an information engine powered solely by temporal correlations and not by statistical biases, as employed by previous engines. Key to this is the engine's ability to synchronize---the engine automatically returns to a desired dynamical phase when thrown into an unwanted, dissipative phase by corruptions in the input---that is, by unanticipated environmental fluctuations. This self-correcting mechanism is robust up to a critical level of corruption, beyond which the system fails to act as an engine. We give explicit analytical expressions for both work and critical corruption level and summarize engine performance via a thermodynamic-function phase diagram over engine control parameters. The results reveal a new thermodynamic mechanism based on nonergodicity that underlies error correction as it operates to support resilient engineered and biological systems.Comment: 22 pages, 13 figures; http://csc.ucdavis.edu/~cmg/compmech/pubs/tos.ht

    Robustness of composite pulses to time-dependent control noise

    Get PDF
    We study the performance of composite pulses in the presence of time-varying control noise on a single qubit. These protocols, originally devised only to correct for static, systematic errors, are shown to be robust to time-dependent non-Markovian noise in the control field up to frequencies as high as ~10% of the Rabi frequency. Our study combines a generalized filter-function approach with asymptotic dc-limit calculations to give a simple analytic framework for error analysis applied to a number of composite-pulse sequences relevant to nuclear magnetic resonance as well as quantum information experiments. Results include examination of recently introduced concatenated composite pulses and dynamically corrected gates, demonstrating equivalent first-order suppression of time-dependent fluctuations in amplitude and/or detuning, as appropriate for the sequence in question. Our analytic results agree well with numerical simulations for realistic 1/f1/f noise spectra with a roll-off to 1/f21/f^2, providing independent validation of our theoretical insights.Comment: 11 pages, 4 figures, text and figures updated to published versio
    • …
    corecore