5,118 research outputs found

    A new class of trigonometric B-Spline Curves

    Get PDF
    We construct one-frequency trigonometric spline curves with a de Boor-like algorithm for evaluation and analyze their shape-preserving properties. The convergence to quadratic B-spline curves is also analyzed. A fundamental tool is the concept of the normalized B-basis, which has optimal shape-preserving properties and good symmetric properties

    Algorithms for curve design and accurate computations with totally positive matrices

    Get PDF
    Esta tesis doctoral se enmarca dentro de la teoría de la Positividad Total. Las matrices totalmente positivas han aparecido en aplicaciones de campos tan diversos como la Teoría de la Aproximación, la Biología, la Economía, la Combinatoria, la Estadística, las Ecuaciones Diferenciales, la Mecánica, el Diseño Geométrico Asistido por Ordenador o el Álgebra Numérica Lineal. En esta tesis nos centraremos en dos de los campos que están relacionados con matrices totalmente positivas.This doctoral thesis is framed within the theory of Total Positivity. Totally positive matrices have appeared in applications from fields as diverse as Approximation Theory, Biology, Economics, Combinatorics, Statistics, Differential Equations, Mechanics, Computer Aided Geometric Design or Linear Numerical Algebra. In this thesis, we will focus on two of the fields that are related to totally positive matrices.<br /

    Geometric modeling and optimization over regular domains for graphics and visual computing

    Get PDF
    The effective construction of parametric representation of complicated geometric objects can facilitate many design, analysis, and simulation tasks in Computer-Aided Design (CAD), Computer-Aided Manufacturing (CAM), and Computer-Aided Engineering (CAE). Given a 3D shape, the procedure of finding such a parametric representation upon a canonical domain is called geometric parameterization. Regular geometric regions, such as polycubes and spheres, are desirable domains for parameterization. Parametric representations defined upon regular geometric domains have many desirable mathematical properties and can facilitate or simplify various surface/solid modeling and processing computation. This dissertation studies the construction of parameterization on regular geometric domains and explores their applications in shape modeling and computer-aided design. Specifically, we studies (1) the surface parameterization on the spherical domain for closed genus-zero surfaces; (2) the surface parameterization on the polycube domain for general closed surfaces; and (3) the volumetric parameterization for 3D-manifolds embedded in 3D Euclidean space. We propose novel computational models to solve these geometric problems. Our computational models reduce to nonlinear optimizations with various geometric constraints. Hence, we also need to explore effective optimization algorithms. The main contributions of this dissertation are three-folded. (1) We developed an effective progressive spherical parameterization algorithm, with an efficient nonlinear optimization scheme subject to the spherical constraint. Compared with the state-of-the-art spherical mapping algorithms, our algorithm demonstrates the advantages of great efficiency, lower distortion, and guaranteed bijectiveness, and we show its applications in spherical harmonic decomposition and shape analysis. (2) We propose a first topology-preserving polycube domain optimization algorithm that simultaneously optimizes polycube domain together with the parameterization to balance the mapping distortion and domain simplicity. We develop effective nonlinear geometric optimization algorithms dealing with variables with and without derivatives. This polycube parameterization algorithm can benefit the regular quadrilateral mesh generation and cross-surface parameterization. (3) We develop a novel quaternion-based optimization framework for 3D frame field construction and volumetric parameterization computation. We demonstrate our constructed 3D frame field has better smoothness, compared with state-of-the-art algorithms, and is effective in guiding low-distortion volumetric parameterization and high-quality hexahedral mesh generation
    corecore