9,028 research outputs found

    Market Based Approaches for Dynamic Spectrum Assignment

    Get PDF
    Abstract—Much of the technical literature on spectrum sharing has been on developing technologies and systems for non-cooperative) opportunistic use. In this paper, we situate this approach to secondary spectrum use in a broader context, one that includes cooperative approaches to Dynamic Spectrum Access (DSA). In this paper, we introduce readers to this broader approach to DSA by contrasting it with non-cooperative sharing (opportunistic use), surveying relevant literature, and suggesting future directions for researc

    FastPay: High-Performance Byzantine Fault Tolerant Settlement

    Get PDF
    FastPay allows a set of distributed authorities, some of which are Byzantine, to maintain a high-integrity and availability settlement system for pre-funded payments. It can be used to settle payments in a native unit of value (crypto-currency), or as a financial side-infrastructure to support retail payments in fiat currencies. FastPay is based on Byzantine Consistent Broadcast as its core primitive, foregoing the expenses of full atomic commit channels (consensus). The resulting system has low-latency for both confirmation and payment finality. Remarkably, each authority can be sharded across many machines to allow unbounded horizontal scalability. Our experiments demonstrate intra-continental confirmation latency of less than 100ms, making FastPay applicable to point of sale payments. In laboratory environments, we achieve over 80,000 transactions per second with 20 authorities---surpassing the requirements of current retail card payment networks, while significantly increasing their robustness

    Epcast: Controlled Dissemination in Human-based Wireless Networks by means of Epidemic Spreading Models

    Full text link
    Epidemics-inspired techniques have received huge attention in recent years from the distributed systems and networking communities. These algorithms and protocols rely on probabilistic message replication and redundancy to ensure reliable communication. Moreover, they have been successfully exploited to support group communication in distributed systems, broadcasting, multicasting and information dissemination in fixed and mobile networks. However, in most of the existing work, the probability of infection is determined heuristically, without relying on any analytical model. This often leads to unnecessarily high transmission overheads. In this paper we show that models of epidemic spreading in complex networks can be applied to the problem of tuning and controlling the dissemination of information in wireless ad hoc networks composed of devices carried by individuals, i.e., human-based networks. The novelty of our idea resides in the evaluation and exploitation of the structure of the underlying human network for the automatic tuning of the dissemination process in order to improve the protocol performance. We evaluate the results using synthetic mobility models and real human contacts traces
    • …
    corecore