3 research outputs found

    Coordination of Distributed Energy Resource Agents

    Full text link
    This article describes our research in technologies for the management and control of distributed energy resources. An agent-based management and control system is being developed to enable largescale deployment of distributed energy resources. Local intelligent agents will allow consumers who are connected at low levels in the distribution network to manage their energy requirements and participate in coordination responses to network stimuli. Such responses can be used to reduce the volatility of wholesale electricity prices and assist constrained networks during summer and winter demand peaks. In our system, the coordination of energy resources is decentralized. Energy resources coordinate each other to realize efficient autonomous matching of supply and demand in large power distribution networks. The information exchange is through indirect (or stigmergic) communications between agents. The coordination mechanism is asynchronous and adapts to change in an unsupervised manner, making it intrinsically scalable and robust

    Agent-based homeostatic control for green energy in the smart grid

    No full text
    With dwindling non-renewable energy reserves and the adverse effects of climate change, the development of the smart electricity grid is seen as key to solving global energy security issues and to reducing carbon emissions. In this respect, there is a growing need to integrate renewable (or green) energy sources in the grid. However, the intermittency of these energy sources requires that demand must also be made more responsive to changes in supply, and a number of smart grid technologies are being developed, such as high-capacity batteries and smart meters for the home, to enable consumers to be more responsive to conditions on the grid in real-time. Traditional solutions based on these technologies, however, tend to ignore the fact that individual consumers will behave in such a way that best satisfies their own preferences to use or store energy (as opposed to that of the supplier or the grid operator). Hence, in practice, it is unclear how these solutions will cope with large numbers of consumers using their devices in this way. Against this background, in this paper, we develop novel control mechanisms based on the use of autonomous agents to better incorporate consumer preferences in managing demand. These agents, residing on consumers' smart meters, can both communicate with the grid and optimise their owner's energy consumption to satisfy their preferences. More specifically, we provide a novel control mechanism that models and controls a system comprising of a green energy supplier operating within the grid and a number of individual homes (each possibly owning a storage device). This control mechanism is based on the concept of homeostasis whereby control signals are sent to individual components of a system, based on their continuous feedback, in order to change their state so that the system may reach a stable equilibrium. Thus, we define a new carbon-based pricing mechanism for this green energy supplier that takes advantage of carbon-intensity signals available on the internet in order to provide real-time pricing. The pricing scheme is designed in such a way that it can be readily implemented using existing communication technologies and is easily understandable by consumers. Building upon this, we develop new control signals that the supplier can use to incentivise agents to shift demand (using their storage device) to times when green energy is available. Moreover, we show how these signals can be adapted according to changes in supply and to various degrees of penetration of storage in the system. We empirically evaluate our system and show that, when all homes are equipped with storage devices, the supplier can significantly reduce its reliance on other carbon-emitting power sources to cater for its own shortfalls. By so doing, the supplier reduces the carbon emission of the system by up to 25% while the consumer reduces its costs by up to 14.5%. Finally, we demonstrate that our homeostatic control mechanism is not sensitive to small prediction errors and the supplier is incentivised to accurately predict its green production to minimise costs

    A generic holonic control architecture for heterogeneous multi-scale and multi-objective smart microgrids

    Get PDF
    Designing the control infrastructure of future “smart” power grids is a challenging task. Future grids will integrate a wide variety of heterogeneous producers and consumers that are unpredictable and operate at various scales. Information and Communication Technology (ICT) solutions will have to control these in order to attain global objectives at the macrolevel, while also considering private interests at the microlevel. This article proposes a generic holonic architecture to help the development of ICT control systems that meet these requirements. We show how this architecture can integrate heterogeneous control designs, including state-of-the-art smart grid solutions. To illustrate the applicability and utility of this generic architecture, we exemplify its use via a concrete proof-of-concept implementation for a holonic controller, which integrates two types of control solutions and manages a multiscale, multiobjective grid simulator in several scenarios. We believe that the proposed contribution is essential for helping to understand, to reason about, and to develop the “smart” side of future power grids
    corecore