3 research outputs found

    Coordination Models and Languages: 14th International Conference, COORDINATION 2012, Stockholm, Sweden, June 14-15, 2012. Proceedings

    No full text
    International audienceBook Front Matter of LNCS 727

    Time-fluid field-based coordination

    Get PDF
    Emerging application scenarios, such as cyber-physical systems (CPSs), the Internet of Things (IoT), and edge computing, call for coordination approaches addressing openness, self-adaptation, heterogeneity, and deployment agnosticism. Field-based coordination is one such approach, promoting the idea of programming system coordination declaratively from a global perspective, in terms of functional manipulation and evolution in \u201cspace and time\u201d of distributed data structures, called fields. More specifically, regarding time, in field-based coordination it is assumed that local activities in each device, called computational rounds, are regulated by a fixed clock, typically, a fair and unsynchronized distributed scheduler. In this work, we challenge this assumption, and propose an alternative approach where the round execution scheduling is naturally programmed along with the usual coordination specification, namely, in terms of a field of causal relations dictating what is the notion of causality (why and when a round has to be locally scheduled) and how it should change across time and space. This abstraction over the traditional view on global time allows us to express what we call \u201ctime-fluid\u201d coordination, where causality can be finely tuned to select the event triggers to react to, up to to achieve improved balance between performance (system reactivity) and cost (usage of computational resources). We propose an implementation in the aggregate computing framework, and evaluate via simulation on a case study

    Engineering Complex Computational Ecosystems

    Get PDF
    Self-organising pervasive ecosystems of devices are set to become a major vehicle for delivering infrastructure and end-user services. The inherent complexity of such systems poses new challenges to those who want to dominate it by applying the principles of engineering. The recent growth in number and distribution of devices with decent computational and communicational abilities, that suddenly accelerated with the massive diffusion of smartphones and tablets, is delivering a world with a much higher density of devices in space. Also, communication technologies seem to be focussing on short-range device-to-device (P2P) interactions, with technologies such as Bluetooth and Near-Field Communication gaining greater adoption. Locality and situatedness become key to providing the best possible experience to users, and the classic model of a centralised, enormously powerful server gathering and processing data becomes less and less efficient with device density. Accomplishing complex global tasks without a centralised controller responsible of aggregating data, however, is a challenging task. In particular, there is a local-to-global issue that makes the application of engineering principles challenging at least: designing device-local programs that, through interaction, guarantee a certain global service level. In this thesis, we first analyse the state of the art in coordination systems, then motivate the work by describing the main issues of pre-existing tools and practices and identifying the improvements that would benefit the design of such complex software ecosystems. The contribution can be divided in three main branches. First, we introduce a novel simulation toolchain for pervasive ecosystems, designed for allowing good expressiveness still retaining high performance. Second, we leverage existing coordination models and patterns in order to create new spatial structures. Third, we introduce a novel language, based on the existing ``Field Calculus'' and integrated with the aforementioned toolchain, designed to be usable for practical aggregate programming
    corecore