135 research outputs found

    Coordinated Control Based on Bus-Signaling and Virtual Inertia for Islanded DC Microgrids

    Get PDF

    Autonomous Active Power Control for Islanded AC Microgrids with Photovoltaic Generation and Energy Storage System

    Get PDF

    Decentralized Coordinated Control Strategy of Islanded Microgrids

    Get PDF

    Review on Control of DC Microgrids and Multiple Microgrid Clusters

    Get PDF
    This paper performs an extensive review on control schemes and architectures applied to dc microgrids (MGs). It covers multilayer hierarchical control schemes, coordinated control strategies, plug-and-play operations, stability and active damping aspects, as well as nonlinear control algorithms. Islanding detection, protection, and MG clusters control are also briefly summarized. All the mentioned issues are discussed with the goal of providing control design guidelines for dc MGs. The future research challenges, from the authors' point of view, are also provided in the final concluding part

    A Distributed Control Strategy for Islanded Single-Phase Microgrids with Hybrid Energy Storage Systems Based on Power Line Signaling

    Get PDF
    Energy management control is essential to microgrids (MGs), especially to single-phase ones. To handle the variety of distributed generators (DGs) that can be found in a MG, e.g., renewable energy sources (RESs) and energy storage systems (ESSs), a coordinated power regulation is required. The latter are generally battery-based systems whose lifetime is directly related to charge/discharge processes, whereas the most common RESs in a MG are photovoltaic (PV) units. Hybrid energy storage systems (HESS) extend batteries life expectancy, thanks to the effect of supercapacitors, but they also require more complex control strategies. Conventional droop methodologies are usually applied to provide autonomous and coordinated power control. This paper proposes a method for coordination of a single-phase MG composed by a number of sources (HESS, RES, etc.) using power line signaling (PLS). In this distributed control strategy, a signal whose frequency is higher than the grid is broadcasted to communicate with all DGs when the state of charge (SoC) of the batteries reaches a maximum value. This technique prevents batteries from overcharging and maximizes the power contribution of the RESs to the MG. Moreover, different commands apart from the SoC can be broadcasted, just by changing to other frequency bands. The HESS master unit operates as a grid-forming unit, whereas RESs act as grid followers. Supercapacitors in the HESS compensate for energy peaks, while batteries respond smoothly to changes in the load, also expanding its lifetime due to less aggressive power references. In this paper, a control structure that allows the implementation of this strategy in single-phase MGs is presented, with the analysis of the optimal range of PLS frequencies and the required self-adaptive proportional-resonant controllers

    Modeling, Simulation and Decentralized Control of Islanded Microgrids

    Get PDF
    Modeling, Simulation and Decentralized Control of Islanded Microgrids by Farideh Doost Mohammadi This thesis develops a comprehensive modular state-space model of microgrids containing inverter-based Distributed Energy Resources (DERs). The model is validated and then used for small signal stability enhancement and voltage and frequency control. State space models of various microgrid elements are first derived, which allow for the inclusion of any possible elements such as current controlled inverters that are missing in the literature. Then a complete state space model is obtained to complement the models that are available in the literature and whose objectives are system analysis only as compared to the purpose of this work which is stability enhancement and control design. Specifically,;1. Small signal stability is enhanced by adding current controlled inverters to the microgrid. 2. Decentralized secondary frequency and voltage control techniques are proposed.;For secondary frequency control purposes, at first, the control strategies of different kinds of inverters and storage devices are described. Then, a novel solution is introduced for islanded microgrids by decomposing the system into virtual control areas.;For the secondary voltage control an Average Consensus Algorithm (ACA) is used and applied on a network of agents which has been chosen optimally based on the required connectivity. The main purpose of the ACA is to keep the average voltage of all the buses at a desired level during islanding. Then another control strategy is proposed to improve the voltage profile. While the average voltage is kept fixed by the voltage controlled inverters, this voltage profile smoothness is obtained by dedicating zones to current controlled inverters and defining their responsibilities based on the location of the loads

    Coordinated Secondary Control for Balanced Discharge Rate of Energy Storage System in Islanded Microgrids

    Get PDF
    • …
    corecore