559 research outputs found

    Joint Hybrid Backhaul and Access Links Design in Cloud-Radio Access Networks

    Full text link
    The cloud-radio access network (CRAN) is expected to be the core network architecture for next generation mobile radio systems. In this paper, we consider the downlink of a CRAN formed of one central processor (the cloud) and several base-station (BS), where each BS is connected to the cloud via either a wireless or capacity-limited wireline backhaul link. The paper addresses the joint design of the hybrid backhaul links (i.e., designing the wireline and wireless backhaul connections from the cloud to the BSs) and the access links (i.e., determining the sparse beamforming solution from the BSs to the users). The paper formulates the hybrid backhaul and access link design problem by minimizing the total network power consumption. The paper solves the problem using a two-stage heuristic algorithm. At one stage, the sparse beamforming solution is found using a weighted mixed `1=`2 norm minimization approach; the correlation matrix of the quantization noise of the wireline backhaul links is computed using the classical rate-distortion theory. At the second stage, the transmit powers of the wireless backhaul links are found by solving a power minimization problem subject to quality-of-service constraints, based on the principle of conservation of rate by utilizing the rates found in the first stage. Simulation results suggest that the performance of the proposed algorithm approaches the global optimum solution, especially at high signal-to-interference-plus-noise ratio (SINR).Comment: 6 pages, 3 figures, IWCPM 201

    Dynamic Time-domain Duplexing for Self-backhauled Millimeter Wave Cellular Networks

    Full text link
    Millimeter wave (mmW) bands between 30 and 300 GHz have attracted considerable attention for next-generation cellular networks due to vast quantities of available spectrum and the possibility of very high-dimensional antenna ar-rays. However, a key issue in these systems is range: mmW signals are extremely vulnerable to shadowing and poor high-frequency propagation. Multi-hop relaying is therefore a natural technology for such systems to improve cell range and cell edge rates without the addition of wired access points. This paper studies the problem of scheduling for a simple infrastructure cellular relay system where communication between wired base stations and User Equipment follow a hierarchical tree structure through fixed relay nodes. Such a systems builds naturally on existing cellular mmW backhaul by adding mmW in the access links. A key feature of the proposed system is that TDD duplexing selections can be made on a link-by-link basis due to directional isolation from other links. We devise an efficient, greedy algorithm for centralized scheduling that maximizes network utility by jointly optimizing the duplexing schedule and resources allocation for dense, relay-enhanced OFDMA/TDD mmW networks. The proposed algorithm can dynamically adapt to loading, channel conditions and traffic demands. Significant throughput gains and improved resource utilization offered by our algorithm over the static, globally-synchronized TDD patterns are demonstrated through simulations based on empirically-derived channel models at 28 GHz.Comment: IEEE Workshop on Next Generation Backhaul/Fronthaul Networks - BackNets 201

    Millimeter-wave Evolution for 5G Cellular Networks

    Full text link
    Triggered by the explosion of mobile traffic, 5G (5th Generation) cellular network requires evolution to increase the system rate 1000 times higher than the current systems in 10 years. Motivated by this common problem, there are several studies to integrate mm-wave access into current cellular networks as multi-band heterogeneous networks to exploit the ultra-wideband aspect of the mm-wave band. The authors of this paper have proposed comprehensive architecture of cellular networks with mm-wave access, where mm-wave small cell basestations and a conventional macro basestation are connected to Centralized-RAN (C-RAN) to effectively operate the system by enabling power efficient seamless handover as well as centralized resource control including dynamic cell structuring to match the limited coverage of mm-wave access with high traffic user locations via user-plane/control-plane splitting. In this paper, to prove the effectiveness of the proposed 5G cellular networks with mm-wave access, system level simulation is conducted by introducing an expected future traffic model, a measurement based mm-wave propagation model, and a centralized cell association algorithm by exploiting the C-RAN architecture. The numerical results show the effectiveness of the proposed network to realize 1000 times higher system rate than the current network in 10 years which is not achieved by the small cells using commonly considered 3.5 GHz band. Furthermore, the paper also gives latest status of mm-wave devices and regulations to show the feasibility of using mm-wave in the 5G systems.Comment: 17 pages, 12 figures, accepted to be published in IEICE Transactions on Communications. (Mar. 2015

    Millimeter-wave backhaul for 5G networks: challenges and solutions

    No full text
    The trend for dense deployment in future 5G mobile communication networks makes current wired backhaul infeasible owing to the high cost. Millimetre-wave (mm-wave) communication, a promising technique with the capability of providing a multi-gigabit transmission rate, offers a flexible and cost-effective candidate for 5G backhauling. By exploiting highly directional antennas, it becomes practical to cope with explosive traffic demands and to deal with interference problems. Several advancements in physical layer technology, such as hybrid beamforming and full duplexing, bring new challenges and opportunities for mm-wave backhaul. This article introduces a design framework for 5G mm-wave backhaul, including routing, spatial reuse scheduling and physical layer techniques. The associated optimization model, open problems and potential solutions are discussed to fully exploit the throughput gain of the backhaul network. Extensive simulations are conducted to verify the potential benefits of the proposed method for the 5G mm-wave backhaul design

    Cognitive Orthogonal Precoder for Two-tiered Networks Deployment

    Full text link
    In this work, the problem of cross-tier interference in a two-tiered (macro-cell and cognitive small-cells) network, under the complete spectrum sharing paradigm, is studied. A new orthogonal precoder transmit scheme for the small base stations, called multi-user Vandermonde-subspace frequency division multiplexing (MU-VFDM), is proposed. MU-VFDM allows several cognitive small base stations to coexist with legacy macro-cell receivers, by nulling the small- to macro-cell cross-tier interference, without any cooperation between the two tiers. This cleverly designed cascaded precoder structure, not only cancels the cross-tier interference, but avoids the co-tier interference for the small-cell network. The achievable sum-rate of the small-cell network, satisfying the interference cancelation requirements, is evaluated for perfect and imperfect channel state information at the transmitter. Simulation results for the cascaded MU-VFDM precoder show a comparable performance to that of state-of-the-art dirty paper coding technique, for the case of a dense cellular layout. Finally, a comparison between MU-VFDM and a standard complete spectrum separation strategy is proposed. Promising gains in terms of achievable sum-rate are shown for the two-tiered network w.r.t. the traditional bandwidth management approach.Comment: 11 pages, 9 figures, accepted and to appear in IEEE Journal on Selected Areas in Communications: Cognitive Radio Series, 2013. Copyright transferred to IEE
    • …
    corecore