275 research outputs found

    Multi-User Visible Light Communication Broadcast Channels With Zero-Forcing Precoding

    Get PDF
    This paper studies zero-forcing (ZF) precoding designs for multi-user multiple-input single-output visible light communication (VLC) broadcast channels. In such broadcast systems, the main challenging issue arises from the presence of multi-user interference (MUI) among non-coordinated users. In order to completely suppress the MUI, ZF precoding, which is originally designed for radio frequency (RF) communications, is adopted. Different from RF counterpart, VLC signal is inherently non-negative and has a limited linear range, which leads to an amplitude constraint on the input data signal. Unlike the average power constraint, obtaining the exact capacity for an amplitude-constrained channel is more cumbersome. In this paper, we first investigate lower and upper bounds on the capacity of an amplitude-constrained Gaussian channel, which are especially tight in the high signal-to-noise regime. Based on the derived bounds, optimal beamformer designs for the max-min fairness sum-rate and the maximum sum-rate problems are formulated as convex optimization problems, which then can be efficiently solved by using standard optimization packages

    Lights and Shadows: A Comprehensive Survey on Cooperative and Precoding Schemes to Overcome LOS Blockage and Interference in Indoor VLC

    Get PDF
    Visible light communications (VLC) have received significant attention as a way of moving part of the saturated indoor wireless traffic to the wide and unregulated visible optical spectrum. Nowadays, VLC are considered as a suitable technology, for several applications such as high-rate data transmission, supporting internet of things communications or positioning. The signal processing originally derived from radio-frequency (RF) systems such as cooperative or precoding schemes can be applied to VLC. However, its implementation is not straightforward. Furthermore, unlike RF transmission, VLC present a predominant line-of-sight link, although a weak non-LoS component may appear due to the reflection of the light on walls, floor, ceiling and nearby objects. Blocking effects may compromise the performance of the aforementioned transmission schemes. There exist several surveys in the literature focused on VLC and its applications, but the management of the shadowing and interference in VLC requires a comprehensive study. To fill this gap, this work introduces the implementation of cooperative and precoding schemes to VLC, while remarking their benefits and drawbacks for overcoming the shadowing effects. After that, the combination of both cooperative and precoding schemes is analyzed as a way of providing resilient VLC networks. Finally, we propose several open issues that the cooperative and precoding schemes must face in order to provide satisfactory VLC performance in indoor scenarios.This work has been supported partially by Spanish National Project TERESA-ADA(TEC2017-90093-C3-2-R) (MINECO/AEI/FEDER, UE), the research project GEOVEOLUZ-CM-UC3Mfunded by the call “Programa de apoyo a la realización de proyectos interdisciplinares de I+D parajóvenes investigadores de la Universidad Carlos III de Madrid 2019-2020” under the frame ofthe Convenio Plurianual Comunidad de Madrid-Universidad Carlos III de Madrid and projectMadrid Flight on Chip (Innovation Cooperative Projects Comunidad of Madrid - HUBS 2018/MadridFlightOnChip). Additionally, it has been supported partially by the Juan de la CiervaIncorporación grant IJC2019-040317-I and Juan de la Cierva Formación grant (FJC2019-039541-I/AEI/10.13039/501100011033)
    corecore