892 research outputs found

    Fault-tolerant formation driving mechanism designed for heterogeneous MAVs-UGVs groups

    Get PDF
    A fault-tolerant method for stabilization and navigation of 3D heterogeneous formations is proposed in this paper. The presented Model Predictive Control (MPC) based approach enables to deploy compact formations of closely cooperating autonomous aerial and ground robots in surveillance scenarios without the necessity of a precise external localization. Instead, the proposed method relies on a top-view visual relative localization provided by the micro aerial vehicles flying above the ground robots and on a simple yet stable visual based navigation using images from an onboard monocular camera. The MPC based schema together with a fault detection and recovery mechanism provide a robust solution applicable in complex environments with static and dynamic obstacles. The core of the proposed leader-follower based formation driving method consists in a representation of the entire 3D formation as a convex hull projected along a desired path that has to be followed by the group. Such an approach provides non-collision solution and respects requirements of the direct visibility between the team members. The uninterrupted visibility is crucial for the employed top-view localization and therefore for the stabilization of the group. The proposed formation driving method and the fault recovery mechanisms are verified by simulations and hardware experiments presented in the paper

    Optimal rendezvous trajectory for unmanned aerial-ground vehicles

    Get PDF
    Fixed-wing unmanned aerial vehicles (UAVs) can be an essential tool for low cost aerial surveillance and mapping applications in remote regions. There is however a key limitation, which is the fact that low cost UAVs have limited fuel capacity and hence require periodic refueling to accomplish a mission. Moreover, the usual mechanism of commanding the UAV to return to a stationary base station for refueling can result in fuel wastage and inefficient mission operation time. Alternatively, one strategy could be the use of an unmanned ground vehicle (UGV) as a mobile refueling unit, where the UAV will rendezvous with the UGV for refueling. In order to accurately perform this task in the presence of wind disturbances, we need to determine an optimal trajectory in 3D taking UAV and UGV dynamics and kinematics into account. In this paper, we propose an optimal control formulation to generate a tunable UAV trajectory for rendezvous on a moving UGV that also addresses the possibility of the presence of wind disturbances. By a suitable choice of the value of an aggressiveness index that we introduce in our problem setting, we are able to control the UAV rendezvous behavior. Several numerical results are presented to illustrate the reliability and effectiveness of our approach

    Applications and prototype for systems of systems swarm robotics

    Full text link
    In order to develop a robotic system of systems the robotic platforms must be designed and built. For this to happen, the type of application involved should be clear. Swarm robots need to be self contained and powered. They must also be self governing. Here the authors examine various applications and a prototype robot that may be useful in these scenarios. <br /

    Adaptive and learning-based formation control of swarm robots

    Get PDF
    Autonomous aerial and wheeled mobile robots play a major role in tasks such as search and rescue, transportation, monitoring, and inspection. However, these operations are faced with a few open challenges including robust autonomy, and adaptive coordination based on the environment and operating conditions, particularly in swarm robots with limited communication and perception capabilities. Furthermore, the computational complexity increases exponentially with the number of robots in the swarm. This thesis examines two different aspects of the formation control problem. On the one hand, we investigate how formation could be performed by swarm robots with limited communication and perception (e.g., Crazyflie nano quadrotor). On the other hand, we explore human-swarm interaction (HSI) and different shared-control mechanisms between human and swarm robots (e.g., BristleBot) for artistic creation. In particular, we combine bio-inspired (i.e., flocking, foraging) techniques with learning-based control strategies (using artificial neural networks) for adaptive control of multi- robots. We first review how learning-based control and networked dynamical systems can be used to assign distributed and decentralized policies to individual robots such that the desired formation emerges from their collective behavior. We proceed by presenting a novel flocking control for UAV swarm using deep reinforcement learning. We formulate the flocking formation problem as a partially observable Markov decision process (POMDP), and consider a leader-follower configuration, where consensus among all UAVs is used to train a shared control policy, and each UAV performs actions based on the local information it collects. In addition, to avoid collision among UAVs and guarantee flocking and navigation, a reward function is added with the global flocking maintenance, mutual reward, and a collision penalty. We adapt deep deterministic policy gradient (DDPG) with centralized training and decentralized execution to obtain the flocking control policy using actor-critic networks and a global state space matrix. In the context of swarm robotics in arts, we investigate how the formation paradigm can serve as an interaction modality for artists to aesthetically utilize swarms. In particular, we explore particle swarm optimization (PSO) and random walk to control the communication between a team of robots with swarming behavior for musical creation
    corecore