2,118 research outputs found

    The Graphical Lasso: New Insights and Alternatives

    Full text link
    The graphical lasso \citep{FHT2007a} is an algorithm for learning the structure in an undirected Gaussian graphical model, using β„“1\ell_1 regularization to control the number of zeros in the precision matrix {\B\Theta}={\B\Sigma}^{-1} \citep{BGA2008,yuan_lin_07}. The {\texttt R} package \GL\ \citep{FHT2007a} is popular, fast, and allows one to efficiently build a path of models for different values of the tuning parameter. Convergence of \GL\ can be tricky; the converged precision matrix might not be the inverse of the estimated covariance, and occasionally it fails to converge with warm starts. In this paper we explain this behavior, and propose new algorithms that appear to outperform \GL. By studying the "normal equations" we see that, \GL\ is solving the {\em dual} of the graphical lasso penalized likelihood, by block coordinate ascent; a result which can also be found in \cite{BGA2008}. In this dual, the target of estimation is \B\Sigma, the covariance matrix, rather than the precision matrix \B\Theta. We propose similar primal algorithms \PGL\ and \DPGL, that also operate by block-coordinate descent, where \B\Theta is the optimization target. We study all of these algorithms, and in particular different approaches to solving their coordinate sub-problems. We conclude that \DPGL\ is superior from several points of view.Comment: This is a revised version of our previous manuscript with the same name ArXiv id: http://arxiv.org/abs/1111.547

    Sparse inverse covariance estimation with the lasso

    Full text link
    We consider the problem of estimating sparse graphs by a lasso penalty applied to the inverse covariance matrix. Using a coordinate descent procedure for the lasso, we develop a simple algorithm that is remarkably fast: in the worst cases, it solves a 1000 node problem (~500,000 parameters) in about a minute, and is 50 to 2000 times faster than competing methods. It also provides a conceptual link between the exact problem and the approximation suggested by Meinhausen and Buhlmann (2006). We illustrate the method on some cell-signaling data from proteomics.Comment: submitte

    A convex pseudo-likelihood framework for high dimensional partial correlation estimation with convergence guarantees

    Get PDF
    Sparse high dimensional graphical model selection is a topic of much interest in modern day statistics. A popular approach is to apply l1-penalties to either (1) parametric likelihoods, or, (2) regularized regression/pseudo-likelihoods, with the latter having the distinct advantage that they do not explicitly assume Gaussianity. As none of the popular methods proposed for solving pseudo-likelihood based objective functions have provable convergence guarantees, it is not clear if corresponding estimators exist or are even computable, or if they actually yield correct partial correlation graphs. This paper proposes a new pseudo-likelihood based graphical model selection method that aims to overcome some of the shortcomings of current methods, but at the same time retain all their respective strengths. In particular, we introduce a novel framework that leads to a convex formulation of the partial covariance regression graph problem, resulting in an objective function comprised of quadratic forms. The objective is then optimized via a coordinate-wise approach. The specific functional form of the objective function facilitates rigorous convergence analysis leading to convergence guarantees; an important property that cannot be established using standard results, when the dimension is larger than the sample size, as is often the case in high dimensional applications. These convergence guarantees ensure that estimators are well-defined under very general conditions, and are always computable. In addition, the approach yields estimators that have good large sample properties and also respect symmetry. Furthermore, application to simulated/real data, timing comparisons and numerical convergence is demonstrated. We also present a novel unifying framework that places all graphical pseudo-likelihood methods as special cases of a more general formulation, leading to important insights
    • …
    corecore